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A Torsional Contact Problem for
an Indented Half-Space

This paper is concerned with the torsion of a rigid disk bonded to the bottom of a
cylindrical indentation on an elastic half-space. By virtue of Fourier sine and cosine
transforms, the mixed boundary value problem in classical elastostatics is shown to
be reducible to a pair of integral equations, of which one possesses a generalized
Cauchy singular kernel. With the aid of the theory of analytic functions, the inherent
Sfractional-order singularity in the contact problem is rendered explicit. Illustrative
results on the torsional stiffness of the base of the indentation and the corresponding
contact stress distribution are presented for engineering applications.

R. Y. S. Pak

F. Abedzadeh

Department of Civil, Environmental and
Architectural Engineering,

University of Colorado,

Boulder, CO 80309-0428

1 Introduction

The determination of the response of an elastic medium under
the torsional action of a bonded rigid disk has been the subject
of numerous investigations owing to its relevance to foundation
engineering, soil-structure interaction, mechanical and struc-
tural designs, and contact mechanics. As a prominent example
of mixed boundary value problems in the theory of elasticity,
it has attracted the attention of Reissner and Sagoci (1944),
Sagoci (1944), Rostovtsev (1955), Collins (1962), Sneddon
(1947, 1966), Gladwell (1969), Erguven (1988), and Pak and
Saphores (1991). In these studies, the supporting solid is ideal-
ized as either an elastic half-space or a finite stratum with
smooth planar boundary surfaces. For a number of practical
applications, however, a more relevant configuration is one
where the loading is applied to the foundation medium through
the base of a prepared indentation. In geotechnical engineering,
such boundary topography is common in most construction
projects where the foundations are placed at the bottom of exca-
vations (Fang, 1991). In relation to various manufacturing pro-
cesses and ground exploration methods, an understanding of
the class of mixed boundary value problems associated with
an indented medium is conducive to a rational analysis and
interpretation of the physical process of drilling, coring, and in-
situ testing. Owing to the inherent physical and mathematical
complexities involved, however, no exact solution has yet been
reported for the indented half-space problem.

In this paper, a formal treatment is presented for the torsional
response of a rigid disk bonded to the flat end of a cylindrical
hole in a half-space. With the aid of Fourier sine and cosine
transforms, it is shown that the mixed boundary value problem
can be reduced to a pair of integral equations, of which one
possesses a generalized Cauchy-singular kernel. Through an
analysis of the kernels of the governing equations, the frac-
tional-order singularity of the interfacial traction associated with
the contact problem is directly extracted. Together with the
analytical development of some related integrals, a solution
procedure is implemented which can incorporate the singular
nature of the contact traction explicitly. To facilitate theoretical
and engineering applications, results on the influence of the
embedment depth on the torsional stiffness of the rigid disk and
the contact stress distribution are presented as illustrations.
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2 Formulation of Problem

Of interest in this investigation is the torsional response of a
rigid disk bonded to the bottom of a flat-ended cylindrical cavity
of radius a and depth !/ in a homogeneous, isotropic, linear
elastic half-space (see Fig. 1). For this axisymmetric problem
in cylindrical coordinates, 7, and 7, are the only nonzero
stresses in the semi-infinite medium. Using 7, to denote the
applied torque required to sustain the rotation of the rigid disk
about the z-axis by an angle ®, one may write the loading
condition at the base of the hole as

'I} = =27 f rZTZy( r, f]dr

0

(1)

such that

u(r, ) =0r, r<a. (2)
Here, u(r, z) stands for the angular displacement field of the
indented solid. Other key requirements for the problem are the
traction-free condition for the wall of the cylindrical hole,

T,—ﬂ(a, z):(]s USZ<I‘ (3}
the free-surface condition for the upper plane of the indented
half-space,

To(r,0)=0, r<a, (4)
and the regularity condition,
u(r,z) =0, ¥r* + 22>, (5)

With p as the shear modulus of the elastic solid, the constitutive
relations of relevance are

u 9 (a)
T =H——y Tp=pr—|~—].

6
0z ar \ r (6)

Owing to the particular topology of the domain, it is convenient
to consider the response of the medium in regions R, = {(r,
,2)lr=a,0=0=2m,z=0}and R, = {(r, 0, 2)|r = a,
0 =6 = 2w,z =1}. With the subscript i denoting the quantities
of interest in the ith domain henceforth, the equations of equilib-
rium for the two regions can be expressed as

62u| l au| i azul
— ¥ =t =0, r>a,2>0, (7
at  r or ot 9z roa @
%, 10w, w9

Bk ot T =0, r<a, >/, 8
ar*  radr r* 9z° 3 #)
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half-space

Fig. 1 A rigid disk on an indented half-space

respectively. In terms of the responses of R, and R;, conditions
(2), (3), and (4) imply

w(r,)=0r, 0=r<a, (9)
r—‘?—(ﬂ) (a,2)=0, 0=z=1, (10)
ar\r
%{r,O)— r=a, (11)
while the regularity condition translates to
u(r,z2)=0, Vr*+ 22>, i=12 (12)

To ensure the responses of regions R, and R, are compatible
over their common boundary, one must also require that

T (a,2) = T(a,2), z=1 (13)

and

3u| 3
—\a,z2)=—14a,2),
% (a,z) = a2 2 (a, 2)

In view of the boundary conditions (9) and (11), it is natural
to define the Fourier cosine and sine transforms

z=1. (14)

i (r, &) =%.ru1(r. z) cos (£z)dz, (15)
0
ih(r, ) = % r uy(r, z) sin £(z — 1)dz. (16)
]
In terms of (15) and (16), the field Eqgs. (7) and (8) can be
written as
d’y | 1da, 2 4 )
dr® * r dr (E aeia B i
am 1dy (. 1) -
e (g + 53 ) = —¢or, (18)
whose general solutions are
a(r, &) = Al§)K (&) + Bi(E)N1(&n), (19)
®
&(r, §) = A (6K (§r) + Ba(§) L (&r) + ?r (20)

Here I,(x) and K,(x) are the modified Bessel functions of the
first and second kind of order v, respectively. For the solution
to be bounded at r = 0 and =, it is evident that A, and B, must
both be zero. It then follows from the inversion theorems for
sine and cosine transforms that the displacement fields in R,
and R, can be represented as

wir ) = [ AOKER cos (E0)dE,
r=a, z=0. (21)
ntr,2) = 0r + [ BU(©1(En sin &z - g,
r=sa, z=1[. (22)
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For further reduction, it is useful to write the shear stress
T ONT =aas

im ur & (W) = .0
i 2 (%) =m0 =

where 7(z) is an unknown function to be determined. According
to (13), the solution in R, must therefore yield

Oqqu]

lim p.ri (4"3) =pux(z), z=1 (24)
—a ar\ r
On substituting (21) into (23), one finds
lim pur = (1 [ 4@ cos (cfZ)K.(Er)dE) = ux(a),
r——a ar \r Jo
z=0. (25)
Through the use of the identity
P (1 K.(Er)) = —EKy(&r), (26)
ar \r
(25) can be written as
- J: €A (£)Kz(&a) cos (§2)d€ = x(z). 27
Likewise, with the aid of (22), (24) yields
lim uri (l r By(EYN(Er) sin £(z — DdE + @))
r—a ar \r 0
=px(z), z=1. (28)
With the identity
gl (1 r.(m) = en(en), (29)
or \r

it can be shown that (28) reduces to
E EBy(&)h(€a) sin §(z — DdE = x(z), z=1. (30)

Through a formal inversion of (27) and (30), one is thus led
to

A(&) = _r x(z) cos (£z)dz, (31)

EK:(€ )
2 :
B,(§) = el (éa) f x(z) sin &(z — Ddz.  (32)

As a result of (21), (22), (31), (32) and suitable regularity
hypotheses on the function x(z), one may express

%( rz)=— _[H(d?«(r,z—t;)
+ Bx(roz+ O)x(0)dC, r>a, z=0, (33)

135‘3(1" Z) = Ju(i';(r, =iz}
+@(r, L+ z-20)x(D)dl, r<a, z=1, (34)
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where

Be(r, d) = If‘(f”; n (€d)dé, (35)
B(r, d) = F ;"{f’i sin (£d)dE. (36)

With the aid of the foregoing representations, the remaining
interfacial condition (14) can be stated as

-rn (®(a™,E—2z)+ ®(a™, L+ z—2D))7(L)d¢E

= J: (x(a*, z— C) + Pg(a™, z + {)T(L)dE,

z=1. (37)

In terms of the function 7(z), an equivalent statement of the
loading condition in (1) can also be given by

T:

f T(£)dE = (38)

As will be illustrated later, (37) is a generalized Cauchy
singular integral equation which, together with (38), constitute
the primary governing equations for the contact problem.

3 Reduction of Governing Integral Equations

For further reduction of (37), it is useful to note (Pak and
Abedzadeh, 1992) that

Ki(&r) )
d)d
s K(éa } n (£d)d¢§
_ 7 (Ki(a) . 1
= J:) (Kz(ﬁd) 1) sin (€d)d€ + 3 (39)
and
i |(§")
5_1‘1:1 .rlz(g ) in (£d)d¢
_ ([ 1(a) . 1
= .[: (Imz(ﬁa) l) sin (éd)dé + ke (40)
By recourse to (39) and (40), (37) can be written as
= 2 1 l
f, [C—Z+C+2*21_C+Z] TR
I ({a) .
- l =
’ J:m [J: (f:(&a) ) ERgG =)
+ sin &(§ + z — ﬂ))d&]’r(C)a’Q
Ki(&a) .
A . kL, ] -z
o[ [-r (Kz(Ea) ) S
— sin §(§ + z))dﬁ]T(C)dC =0. (41)
With the definition of the dimensionless parameters
=zla, [=lla, §={la, (42)
and the function
#(2) = 1(2), (43)

Journal of Applied Mechanics

(41) can finally be stated as
N 2 1 1
L [C"—z‘+l;+£ 2f §+z]f-(C)dC

+f[k1<é—z>+k.(c’+f—2f>

+ k(-2 — k@€ +1#E&)d =0 (44)
(1
4ild) _~[> (fzta)
B Ki(€)
ka(d) = .': (Kz(f)

In terms of (43), (38) can also be expressed in dimensionless
form as

where

1) sin (¢d)d¢, (45)

1) sin (€d)d¢. (46)

T,

f F(E)dE = 47
f 2

Equations (44) and (47) govern the shear stress distribution
Tqg0on r = a for z = [ under the applied torque. Their solutions

will, in turn, render the response of the indented medium fully
determinate by virtue of (21) (22), (31), and (32).

4 Singular Nature of Solution

As should be evident from the governing integral Eq. (44),
the terms 2/( — #) and 1/(£ + 2 — 21 [) constitute a generahzed
Cauchy kernel which is singular if £ = £ or if both { and £
approach the end point [. To investigate the singular nature of
the solution, it is useful to express

; n(§)

L) = T-1 0 <Re(f) <1, (48)
and define two sectionally analytic functions
Fi(2) = - r ?(C)
= zg—fé)—uc 2
Fa2) = gc :f] g
- i J': € +z —n(zzt")}(;‘ Y @€ 0

where Z is extended to the complex plane. From the basic behav-
ior of Cauchy integrals near the end points of the line of integra-
tion (Muskhelishvili, 1953), it can be shown as Z — ™ on the
real axis that,

n(l) cot (rB)e™

Fi(3) = Z-Ty + F1(9), (51)
n(he™
Fy(8) = preSy Y B2 -1 F3(2), (52)
where F{ and F¥ satisfy
| FY (z")|< C s |F?(f)|€%- (53)
— | |2 — ]

In the above, ¢,, ¢;, a; and «;, are real positive constants where
both @, and «;, are less than Ref. Upon substituting (51) and
(52) into (44), one can readily conclude that

MARCH 1996, Vol. 63 / 3
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2 cot (wf3) + (54)

1
—=)
sin (7wf)
which yields 8 = 2 This result is consistent with the findings
of Williams (1952) for a fixed-free corner problem.

5 Solution of Integral Equations

Central to the mathematical formulation in (44 ) and (47) are
the two kernel functions &, and &,. By the method of contour
integration on the complex £-plane, Pak and Abedzadeh (1992)
have shown that k; and &, can be evaluated in the form of

—(14ymd

1 e
k(d) =21 — = + 7 ————
1(d) = 2m e

+ T Z {e‘—yud —e (-14-(3-’4})1:1)‘ d=0, (55)

and

w 7
ka(d) = — =1 )e™ag,
() J; (ﬂ'&(J’%(ﬁ] + Y3(€)) )e ¢

d = 0.

(56)

The infinite series in (55), whose y,, n = 0, ..., % denote the
non-negative roots of the Bessel function of the first kind J, in
ascending order with y, = 0, possesses rapid convergence. On
the other hand, with the representation in (56), k, can be evalu-
ated effectively by quadrature methods.

With the foregoing developments for k; and k., one is now
ready to determine the solution of the governing Egs. (44) and
(47). To this end, it is useful to make the transformation

v=1E-T+1), x=1@E-[+1). (57)
In terms of (57), (44) and (47) can be expressed as
1
f Glx,v)fo(v)dv =0, 0=v=1, (58)
0
1 f B 'f]
J:. = Folv)dv = e (59)
where
x 2 1 1
== + - -
G, v) v [x—u v+x—2ux x+uv+2(/- l)vx]

(et

+k2(l_l)_kz(1+l+2(f— 1))]; (60)
voox vox

%o(u)=%(£+f—l), (61)
T,=13. (62)
ua

With an even extension of 7, to the interval of [—1, 0], (58)
can be cast as

1
f G(lx|, [vDFe(lvDdv =0, -1=x=1. (63)
-1

In recognition of the singular behavior of #(Z) exposed in
the preceding section, it is natural to write

4 / Vol. 63, MARCH 1996

0.15 1 1 1 L
La=1
——— L/a=.
0.10 —-—- l/a=.05
5 ————— l/a=.01
® - - - - l/a=,001
=~
0.05- |
0.00 T T T T X
0.0 0.2 0.4 0.6 0.8 10

Fig. 2 Solution T(x)

T(x)

Fol(x) = =5 (64)
Substituting (64 ) into (63) yields
' T(|lv)
fl G(| x|, UUde =0, -1l=x=1. (65)

In view of the fractional-order singularities of the integrand
at —1 and 1, and the symmetry of T(x) with respect to 0, one
may expand the solution in terms of Jacobi polynomials
{ P4 (x)} where @ = 8 = % (Erdogan, 1979). By the method
of collocations, (65) can be reduced to

2N
2 WG x5l [uDTuh =0, j=1,...,2N -1 (66)
k=1
where
—(4N+a+5+2)
a+f
W, = XTQAN+a+ 1HI'2N+ 5+ 1)2 (67)
N+ DI2N+a+p8+1)
XT(N +a + B+ DPSA ) S PP ()
v
and x; and v, are the roots of
PP () =0, j=1,...,2N -1, (68)
PSP 20(y) =0, k=1,...,2N, (69)

respectively, in descending order. Since the roots x; and v, are
symmetric with respect to the origin, (66) can be stated as

N

S WG (x,v)T(w) =0, j=1,...,N. (70)

k=1

As the root xy is equal to zero, however, it can be shown
that the corresponding Nth equation of (70) is automatically
satisfied. On the other hand, the loading condition (59) fur-
nishes the inhomogeneous equation

i ;
s D (1)

S ) 2

which together with (70) form a linear algebraic system whose
solution can be computed. Typical solutions for different depths
of the hole are given in Fig. 2.

6 Torsional Stiffness

To determine the relationship between the applied torque and
the angle of rotation, one can appeal to (21) which can be
evaluated at r = g and z = [ as

Transactions of the ASME
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1.20 1 -

Kr+(8)/ Kro(0)

1.104 o

1.00 v T T g T " T v
0.0 1.0 2.0 3.0 4.0 5.0

/a

Fig. 3 Torsional stiffness of disk

u(a, l) =§r [T+ &) + (T = )14 (£)dl (72)

where

) —-&(-Q- cos (éd)dE.

o EK2(E)

The numerical evaluation of ¢,(d) is facilitated by noting its
equivalence to

q:(d) = — (73)

= -2 1—-¢e9
d =f (
2D =) \re@o+rien T ¢

|d|
n(ldi + 1) (74)

by contour integration (Pak and Abedzadeh, 1992). Through
the use of (2), (72) and the solution to the governing integral
equations, the angular rotation can be found by

o I o
O=—3Waglé+—+7-1
X

k=1

) e \lege

+ qz(z—l + f= 1)]T(xk), (75)

Xy

The resulting torque-rotation relationship of the disk as a func-
tion of the depth of embedment is shown in Fig. 3. As should
be apparent from the display, the torsional stiffness

Km() = T/® (76)
assumes, as [ = 0, the value of
Ki1(0) = (16/3)pa’, )

which corresponds to the torsional stiffness of a rigid disk
bonded to the surface of a complete half-space (Pak and Sa-
phores, 1991). As the hole deepens, however, one can see that
the torsional stiffness of its base would rise quite rapidly, al-

though the increase is limited to approximately 25 percent as
[— o,

7 Contact Stress Distribution
In accordance with (6) and (34), the contact stress distribu-
tion underneath the disk can be represented as
Tulr, 1) _

Er k(FE-D#E)dl, F<1 (78)
U mJr

Journal of Applied Mechanics

where

_ [ LCO
k(r,d) = o Lo sin (§d)d¢, (79)
F=rla. (80)

As can be easily deduced from (40), (48), (54), and (78),
T4(r, 1) has a singularity of the order % as r = a for [ > 0.

For the evaluation of the kernel (79), one can prove by
contour integration that

k(r,d)=2mr+m 3 Si(rya) e,

=1 Jl(}'ﬂ)

Equation (81 ) can be used to compute k, accurately for interme-
diate and large values of 4. For smaller or zero values of the
argument, however, the following representation is more effec-
tive:

r<1. (81)

bid(1 — b32)  3d
2(1 = bHr® by

3bdr'* 3d (1 b bd
(B (5 -5) 2o

k(r,d) = ( )E(bl)

3 bZ 1/2
+ -2’2 (1 - b—:) (1 = by)"*I1(by, by)
“(L(r&) 5
‘*‘J; (!2(5) 4£K|(E)I|("§)
—%sxs(e)ms)) sin (Ed)dE, r<1 (82)
where
$. 4r _ 4r
b‘_(1+r)2+d2’ T+ n? (83)
w2
E(b) =f V1 — b2 sin? ddo, (84)
0
il l
F(b =f do, 85
&) 0 Gl-bzsinqu ¢ =)
xi2 1
Ti(b,, b =f dd. (86
i, b= | V1 — b? sin? (1 — b, sin’ ¢) 0. (55

In the above, E(b), F(b) and I1(b,, b;) can be evaluated as
standard complete elliptic integrals of the first, second, and third

1'4_ A 1 L i 1
— l/e=1

312_ ———- la=.1
Xt —-—-- /a=05
i /a=.01
g - 1/a=.001
1.0
e e R e T L
é ot r TR s el e e e et o
L e ralasleen oot
x

0‘6 T T oy T T

0.0 0.2 0.4 0.6 0.8 1.0

r/a

Fig. 4 Contact shear stress distribution
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kinds, respectively, while the integral in (82) can be computed
accurately by quadrature.

With the aid of the foregoing procedures, the contact shear
stress distribution can be determined by

N
D _2 5w 12 k,(F, l) . (87)
vi Vg

KB T gt

Typical results are shown in Fig. 4 where they are normalized
by the contact stress distribution

Too(F) _ 3r
To 4ma*a® — r

(88)

for a rigid disk acting on the surface of an unindented half-
space (Pak and Saphores, 1991). As [ — 0, one can see that
the solution for the indented half-space would approach the one
for a smooth half-space except for some boundary layer effects
at the edge of the disk. The latter phenomenon can, however,
be anticipated in view of the difference in the fundamental
singularities inherent in the two boundary value problems.
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Stress Concentration Factors at
an Elliptical Hole on the
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Interface Between Bonded
Dissimilar Half-Planes Under
Bending Moment

The problem of thin plate bending of two bonded half-planes with an elliptical hole
on the interface and interface cracks on its both sides is presented. A uniformly

distributed bending moment applied at the remote ends of the interface is considered.
The complex stress functions approach together with the rational mapping function
technique are used in the analysis, The solution is obtained in closed form. Distribu-
tions of bending and torsional moments, the stress concentration factor as well as
the stress intensity factor, are given for all possible dimensions of the elliptical hole,
various material constants, and rigidity ratios.

Introduction

In bimaterial structures, damage can occur from holes,
scratches, and defects which reduce the load carrying capacity
of large categories of structures used in modern technology.
The bimaterial system is required to act as a single unit, in that
the loads are transmitted from one material to the next through
interfaces. The presence of holes or cracks in one of the two
materials or at the interface could cause high elevation of local
stresses and failure could supervene. The problem of stress
concentration around holes at the interface between bonded
dissimilar half-planes is a problem of invariable practical inter-
est. The problem of stress concentration around holes in a homo-
geneous infinite plate is found in a book by Savin (1961) for
different shapes of a hole. In the present paper, the formulations
given by Savin (1961) for the plate bending in terms of the
complex stress functions are used. The focus of the present
investigation is on the derivation of a general analytical solution
to the problem of thin plate bending of two bonded dissimilar
half-planes with an elliptical hole on the interface and interface
cracks on its both sides and to employ this solution to determine
some physical quantities such as the stress concentration factor.
The complex stress functions approach together with the ratio-
nal mapping function technique are used in the analysis. The
problem is considered for a uniformly distributed bending mo-
ment applied at the remote ends of the interface. Examples of
the distributions of bending and torsional moment along the
interface and boundaries of the hole are shown. Stress concen-
tration factor is calculated for all possible hole dimensions,
several material constants and rigidity ratios. An expression for
the stress concentration factor is derived and its accuracy is
investigated. The stress intensity factor is derived for the case
when the elliptical hole becomes very sharp and can be consid-
ered as a crack penetrating the two materials. Values of the
stress intensity factor are expressed in terms of the complex
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stress functions and the stress concentration factor, respectively.
A comparison between the two expressions is carried out and
their accuracy are investigated.

Analytical Method

Figure 1(a) shows two bonded dissimilar half-planes and an
elliptical hole with an interface crack on its both sides. The two
half-planes are symmetrically bonded along the X-axis which
coincides with one of the principal axes of the hole. The material
at Y = 0 is referred to by material 1, while material 2 is that
at ¥ = 0. Material 1 is rotated about the X-axis as shown in
Fig. 1 (&) so as to facilitate the analysis scheme which is carried
out accordingly. Symbols and subscripts of the components
of bending moments, torsional moments, deflections, bending
forces, and rotations are indicated by capital letters in Fig. 1(a)
and by small letters in Fig. 1(b). A mapping function by means
of which materials 1 and 2 in Fig. 1(&) are mapped into the
unit circles of the ¢-planes, (j = 1, 2) (see Fig. 1(c)), respec-
tively, is expressed as follows:

1+zj_l_b\5\/l+f}

= (la)

& = —ia

1L+ in2
y=—la— - ——
1—-4 1-—-4

X[l+z(1+a,:}+A')] +C (1b)

=1

E,
f+ ¥ —+E

1
1-4 G-y e

= w(y) =

where N = 28 is used in this paper. The rational mapping
function in (1) is derived from the irrational mapping function
of (1a) and then (1b) is expressed in the form of (1¢). The
procedure of deriving the rational mapping function is not stated
in this paper for the sake of briefing, and it has been thoroughly
demonstrated in (Hasebe and Inohara, 1980). Values of A; and
a; of (1b) are given in Table 1 in Hasebe et al. (1994). The
bonded boundary is denoted by M, while the unbonded bound-
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aries are denoted by L, (see Fig. 1(b)). Points on the interface
M of Fig. 1(a) have the same coordinates which corresponds
to 7, = £, on the unit circles. Thus, the boundary conditions on
the interface can be expressed in terms of a single variable o
which satisfies ¢ = 1/& on the unit circle. Bending moments,
torsional moments, deflections, bending forces, and rotations in
Figs. 1(a) and 1(b) are related as

My = —m,, My, =m,, My =-m,, My=m, (2a)
Myy, = my,, Mgy, =My, Wy=-w, W,=w, (2b)
f Py ds = fp,,ds, J.Pyzds = J.p_‘,zds (2¢)
W _dw Wy _dw  OWi_w,
X, ax, ' 0X, ox,' oY, ay
oW, ow
a—Y: = gj i (2d)

Moments, forces, deflections, and rotations are calculated in
accordance with the stress functions derived in the analytical
plane (z;-planes) of Fig. 1(5), and those on the physical plane
(see Fig. 1(a)) are obtained using (2). Bending and torsional
moments are given in terms of the complex stress functions
&i(1), di(1), (j = 1, 2) as follows (Savin, 1961):

my, + m, = —4D(1 + v)) Re[m] (3a)

w' (1)

m, — m, + 2imy,,

= 2D,(1 - uj){ () [""’f(’f)]' + ‘”(‘f}} . (3b)

w' () Lw' (1) w' (1)

Y

C: _a_ _a ICl
Mo ' Mo
Material 1 A b
(D1, v1)
D_IF EBL_C =
. F:
Material 2 t b Mo
(D2,v2)
(a)
¥i
M D t c M
Fi E —=x
M Material | § Mo
A zi-Plane
L
¥2
M D C M
F: Ea X
My Material 2 |pMo
B n-Plane
Lz
(b)
i,Er i,B2
S B s/, B
1 Si 1 a 82 )
A M B M
1 [} ]
D D
-iF1 -iF2
ti-Plane © t2-Plane

Fig. 1 (a) Geometry and coordinate system of two bonded dissimilar
half-planes with an elliptical hole on the interface and interface cracks
on its both sides; (b) z-planes of materials 1 and 2; (c) unit circles of
materials 1 and 2
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Since a uniformly distributed bending moment applied at infin-
ity in the X-direction is considered, each of the stress functions
is divided into two parts as follows:

&i(1) = 1 (1) + & (1), W) = Y (L) + Yi(1) (4a)

where @£ (1;) and ¢/ (1,) are the stress functions representing
the state of stresses at the remote ends of the half-planes for
the uniformly distributed bending moments and are obtained by
substituting the values of the applied moments M, and uM, in
(3a) and (3b) as follows:

oi(n) = M).[Jlu%lv.) w(h),

$Ah) = 5t i), (4b)

Pin) = mwcr.).

As) = I:%J;"’“’} (40)
T

The bending moment applied at material 1 is M;, while to keep
the continuity of rotations at the remote ends, a bending moment
of magnitude M, must be applied at material 2 (see Appen-
dix). The boundary conditions of the external force and rota-
tions are expressed in terms of the two complex stress functions,
@;(8), Y (1), (j = 1, 2) as follows (Savin, 1961):

—K;p;(0) + j(?) ¢j(0) + dy(a) = Dl =) 1_ )
f Fi
0 o
W) o | e ow; . dw;
¢(a) s @j(a) + ¥y(o) (axj + i ay,) 7

where k; = (3 + v;)/(1 - v;), v; is Poisson’s ratio, D; is the
flexural rigidity defined by Ejhj/[12(1 — v})], E; is Young’s
modulus, and 4, is the thickness of the plate. The integral with
respect to s represents integration along the boundary line. m(s)
and p(s) are the bending moment and bending force per unit
length along the boundary line, respectively. a; and b; are the
real and complex constants of integration, respectively, which
are set equal to zero in the present paper (Savin, 1961). The
complex stress function () is given by analytic continuation
of stresses as follows (Muskhelishvili, 1963):

@(1/t)
w' ()

The boundary condition on L; is obtained by substituting from
(8), (4a), and (4b) in (6) as follows:

=1

(m(.c} + ij p(s)d.s‘)dz] = h(a) (9)
Ly

Wi(t) = K (118) — HOE (8)

(o) = ¢] (o) =

<[]

o

where .
(@) = ¢} (a). (10)

The superscripts * and ~ are the limit values of the function
¢;(#;) as approaching the boundary from regions S; and S/,

+
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respectively, (see Fig. 1(c)). Since the externally applied bend-
ing moments are considered by the functions ¢{(f;) and
i (), h,(¢) = 0. The boundary conditions on M are the
continuation of moments and rotations. The continuity of
stresses is expressed in view of (2) as follows:

TN
B _UM (”‘n " EIMP;-,ds)dz,_] -

which is expressed in terms of the complex stress functions in
view of (6) and (8) by

¢i(o) — di(a)
s Ko Dy(1 — 1) 57— e
= ——H_K.D.{l—v.)[(b!(a) $2(0)], (12)
and it can be further simplified using (4a) and (10) as follows:
¢t () = 1 (o)
_ KzD;(] - VZ) BT _ 1B
= “—K.D;(l =7 [ () — 2 (a)]. (13)

Similarly, continuity of rotations along the bonded interface is
expressed in view of (2) as follows:

(?ﬁﬂ-%) _ _(%_5%)
ax, ay, ax; ay, )

Using (7) and (8), (14) can be written in terms of the complex
stress functions by

(14)

D (o) + kipi (o) = =[P2(0) + kb2 ()], (15)
which is expressed using (4a) and (10) as follows:
¢ (o) + kil (0)
= —[¢3" (o) + ka3 (o) ] + Di(a) (16)
D\(o) = Dl - vh) [w(g) — w(o)]. (17)
Since on M we have
w(o) = w(g) = m(l) 5 (18)
a

thus, Dy (o) = 0.
Consider the function 8,(t,) defined by

k2D (1 —

i) = $1n) — P GEAT). (19)
1 ] I

Equation (13) can be written in terms of the function 6,(#,) as

follows:
87(c) — 8 (o) =0. (20)

The solution of (20) is given by an arbitrary rational function
gi(t,) (Muskhelishvili, 1963):

KDy (1 — 1)

BT —
kKiDy (1 — 1) ¢5(1/1) = gi(n). (21)

0:i(n) = di(n) -

On the boundary, the following relation holds:
gi(o) =gi(a) = g(o) (22)

From (21) the two limit values of ¢§(1/5) are expressed by

Journal of Applied Mechanics

B+ :K|D1(l — ) i _
27 (1/7) D1 — 1) (¢17(0) — gi(a)) (23a)
B _ K D(1 — vy) B+ _
¢: (1/5) = Dyl — ) (@17 (o) — gi(0)). (23b)

Substituting (23a) and (234) in (16), the boundary condition
on M is expressed as follows:

7o) + M1 (o) = v181(0) + hiu(o)  (24a)
koD (1l — 1)
h = D 24b
WY = T~ 5)) FaeeDeld —v0 e
s K|K2D2(] — 1) + K1D|“ - 1)) (24¢)
KaDa (1 — 1) + w1 Dy (1 — vy)
5y = (1 + k)i Dy (1 = vy) (24d)

B k:Dy(1 — 1) + ko Dy(1 = 1))

The problem of obtaining ¢ (1) is reduced to the Riemann-
Hilbert problem of (9) on L; and (24a) on M. Similarly, the
function ¢%(#;) can be obtained by merely interchanging the
subscripts 1 and 2 in the foregoing derivations. The coefficients
of ¢3(t,) corresponding to (24b), (24¢), and (24d) are

ki Dy (1 = »y)

o 25
haile) = e DT =) Dl ) 20 8
}\, :l: K2K|D1(I -U|) +K2f)1(l _Vz) (25b)
TN kD1 = ) + kiaDa(1 — 1)
v = (l <+ K|)K21)2(] ™ UZ) (25(,}

ki Dy(1 — ) + ki:Da(1 — w2)

Derivation of General Solution
The general solution of Riemann-Hilbert problem is first de-
rived for ¢%(¢#,) in the f-plane as follows (Muskhelishvili,
1963):
£i(o)
uxi(e)(e —n)

+ x: (1) P () (26a)

Yixi(f)
2wi

i (n) = Hi(y) +

~_xa) h, (o)
B =70 L x1(o) (o — 1)
+ XI(I.I) (o) do. (26b)
2ri Iy xi(o)(o — 1)

Noting that h, (¢) = 0. Also, since D (o) defined by (17)
vanishes, thus, A,y (o) = 0, and consequently H,(#,) = 0 except
for the constant of integration. The function P,(# ) is an arbi-
trary rational function. Plemelj function x,(t,) is defined as
follows:

XI(II) = (f| = a)ml(fl s ﬁ)l—ml
my = 0.5 + i(In )/ (27).

(27a)
(27h)

a and # are the points in the #,-plane (and f,-plane) correspond-
ing to junctures C and D of boundaries L; with M. Since x,(1,)
is a multivalued function, the branch x,(#,)/t, — 1 is chosen
for t; = . Plemelj function, ¥, (#,) has the following relation-
ships on the boundaries:

on M (28a)

(28b)

xi(e) = —Nxi(a)
xi(e) =xi(o) on L.

The function g, (#,) is assumed as the summation of two frac-
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tional expressions which are regular in S} and ST, respectively,
as follows:

b
gi(t) =2 el D M

r St e e — h

where &\, Mk, @ix, and by, are unknown complex constants, but
the value of |£;| is greater than one and the value of |7n,| is
less than one. The contour integral of g, (¢,) of (26a) is changed
into line integral surrounding M, and is carried out using the
residue theorem as follows:

(29)

Yixa(h) gi(a)

2mi Juxi(eXo — 1)
__ya(n) 99 gi(a)

2ri(l + N) Juxi(o)(o — 1)

Y x1(t) ) Ak

N ——e———— 1 . — ——

(1 +Xy) [?( X1(6u) /) & —

+3 (l _ Xxai(n) ) bk } . (30)
k x1{mw) / e — 4

The function in (26a), P,(t,), is determined by utilizing the
regular characteristic of the complex stress function s, (t,) of
(8) in SY. Substituting (4a) and (4b) in (8) we get

D(1/n)

Yi) = k(1) - o' () ——61%(%)
I
M,
-2—5:[—1'_— [w(t) — &(1/4)]. (31)

Expanding the second term in the right-hand side of (31) in
Laurent’s series at t; = 1/, = {;, we get

a(ljt')qb{”(r.): Z AuBibi

32
w"(fl) = C i ( )

+ regular terms in S}

where A, = ‘i’;g(g); B, = Edw'(CI), (k=1,2,...,N).

The first term on the right-hand side of (31) is expressed by
substituting (30) in (26a) and expressing ¢¥(#;) in (26a) as
¢¥(1/1,) as follows:

d3(1/1) = X, (1/6)Py(1/1,)

Y1 _
YY) [%(1

ay
£ — 1/

x,uf?.))
x1(€w)

.3 (1 _ x.(l:ﬁ)) bu ]
& xi(nw) / e — 1/t
B _— Y1
= xa(UmP(U) +
X Z (1 _ Xz(t.) ) _a_lk‘fiﬂ?
k x2(Ew)/ € — 1
+ regular terms in §7  (33)
where
xi1(1/1) o Euxa(h) (34a)
x1(&w) tix2(€)
xi(1/t;) _ Niexz(t) (34b)
xi(me)  toxanie)
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xi(1/1) _ Cixa(t)

xt(C)  fxa(Ch

and 5,1 =1/ nh=1m = IIQ Substituting (32) and
(33) into (31), the function §(#,) is expressed with its irregu-
lar terms in the unit circle as follows:

(34¢)

Yi(n) = ki (1/0)Py(1/n) + E%
XY (] _ Xa(n) ) i} | < AuBili?
X x206)/ €=t k= Cb— 1y
_ M, S Fli?
2Di(1 = v) (5 G — 1y

+ regular terms in §7. (35)

The second term in the right-hand side of (35) is regular at ¢,
= £k, while the third and the fourth terms have poles at ¢, =
€t. The function §(#;) must be regular inside the unit circle
and consequently the irregular terms should cancel out. Ex-
panding the first term in the right-hand side of (35) in a
Laurent’s series at t;, = {; and equating the first, third, and
fourth terms to zero, the function P,(1,) is finally given by

MyE,
2D, — )
x1(8) (& — 1) .

The unknown constants of the function g, (z,) defined in (29)
are obtained using (21) as follows:

v AuBi —

P.(ru)=;l—2

1

(36)

ko Dy (1 — vy)

¢i(n) — —-—KlDl(l — 2y $2(1/y)
Y1 Xl(fi)} aiy
PP - 1 csalbiibi b SHE
L+ N g‘{ xi€w ) &u—H

-
baun ik

KaDh(1 — vy) v, {] _ ) }
Xi(n2) ) na — 4

K|D](] . V|) 1+ h.z "

—, MUEk
AH, =ik
1 < xu(n) v 2Dy(1 = vy) 4 N
K1 xi(8) & —1 1+ N
x 3 {l _ xi(h) } b K:Dy(1 —vy) 7y
k ximdlne—t D1 =v)1+N
% E{I _ xan) } anéii | kaDa(1 — va) 1
k x1(€x%) x—h 1Di(1 = vy) &2
R rt2 F'MDE&
AyB,C;
sl 20,0 - v) a7
¢ x1(8k) &k — 4

The term x2(1/t,) contained in ¢,(1/4) is replaced by x:{#)
as in (34a), (34b), and (34¢), where m, = m,. Relations (19)
and (37) which give the function g,(¢,) are equal. Therefore,
their poles in ST and ST must be equal and the coefficients of
each pole are equal as well, which include or exclude the Plem-
elj functions. Thus, comparing the coefficients of the poles in
the two equations, g,(f,) is determined as follows:
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M, E;

RoB — 0k
=Ly 2D -
gilh ki = C.t"fl
- L
AuBigy? + —EMobx
BB =) 1 2008 Y
— . (38)
D (1 — ) k2 Er — 1
The complex stress function ¢ {(#,) is obtained by (26a), (30),

(36), and (38) and is finally expressed by

sy = Y1
éi(n) BTN
% LQ{HHM“% x.(r.)}
K1 k=1 71 XI(Ck)
g E
AuB: — _ ME,
% 2D,(1 — vy) k2D, (1 — 1) l
G— 1 Dy (1 = vy) ks
-2 Fig. 2 Distributions of bending and torsional moment along the hole
A BT 12y NMDEJ:C& and the interface between the two bonded dissimilar half-planes, D./D,
% { x1(h) } 22Kk 2D,(1 — 1) = 0.5; », :0.5; vy = 0.25, () Cy/a = Cafa =1;a/b =1.(b) C,/a = Caf
e 1 - . (39) aibla=;
= U xadgh G- ’
% n o ; B . ; ;
Similarly, the function ¢3(#;) is obtained and is expressed by _ Dl = ) Dy(1 — v3)
an_—_z MXI + Uz""-_'iz!/| My (4])
¢ﬂ(r)_ Y2 Dy(1 — vy) D|{l_V|)
2(k) =
1+ N

Stress Concentration Factor
% |1 i {l J1th =y X:(-’z)} The stress concentration factor, SCF at points A and B, is

P v 1 (G) calculated for various elliptic holes and is defined by
MAE Sy = M%/My, Sg= M?z-‘(#Mo (42)
- 7
AyB + El)(l—o—*u)’ kD1 =) 1 where M%, and M%, are the bending moments at points A and
X 2 ’ Ul P B, respectively. In Fig. 3 the variation of the SCF is shown

&G —n ko Dy (1 — 12) 1 versus the a/b ratio, and for different values of the rigidity
ratio. S¥ is the SCF at point A for a rigidity ratio equal to D,/

12
AP o
XZ{,_X;(Z)} (=) [ 40
ket x2(&k) Li—n 10.0, . : : 60.0
Sa Sa
The unknown constants A, and Ay can be determined using Se
the relations, Ay = ¢1°(Ch), Au = ¢3°(C1), (k= 1,2, ..., 09
N), and solving 4N simultaneous linear system of equations &0r
with respect to the real and imaginary parts of A, and Ay,.
40.0
Stress Distributions 6.0
Two examples of stress distributions are shown for the fol- 30.0
lowing parameters; rigidity ratio, D,/D, = 0.5, Poisson’s ratio
of material 1, v, = 0.5, and that of material 2, v, = 0.25. 40
Since the shape is symmetrical with respect to the Y-axis, the ’ 200
distributions are shown for X = 0. In Fig. 2(a) the hole shape ’
is circular with the lengths of the interface cracks C, = C; =
a while in Fig. 2(b) the hole shape is the ellipse of ratio b/a 20t
= 1.5 with the length of the interface cracks C, = C; = a. Itis R A 10.0
obvious that as the ratio a/b decreases (i.e., the ellipse becomes - —:Sa
sharper) the maximum values of the bending moments, Mp, and Y ---Sp i

M, increase, then the problem becomes a model of two bonded .
half-planes with a crack penetrating the two materials. On the 00 ahb 1.0 b/a 0.0

boundary M, we have My, = My, = My. In addition the follow- g 3 gires concentration factors at points 4 and B for rigidity ratios
ing relationship holds among My, , My, and My on M, (Hasebe  of D,/D, = 0, 0.5, 1 and 10000, »; = v, = 0.25 and lengths of interface
and Salama, 1994a). cracks are Gy = C; =0and Cy/a = C,/a =4
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Fig.4 Stress concentration factors at points A and B for different values
of Poisson’s ratio and for a rigidity ratio of D,/D; = 0.5 and lengths of
interface cracksare C;, = C, =0

D, = 10000 which represents the bending of bonded elastic to
rigid materials. The problem of bending of a half-plane with an
semi-elliptic hole is demonstrated by the curve D, = 0 for which
the values of S, coincide with the results of Hasebe (1972).
When D, = o the values of the SCF of material 1 are equal to
zero, that is because material 1 is considered fixed at its both
ends which are expressed by the line x; = « and x, = —o and
at these two lines dw,/dx, = 0. The values of the SCF for D,/
D, =1 and v, = v, are found to be exactly equal with the
values given for the case of bending of a homogeneous infinite
plate with an elliptic hole by Savin (1961) for which the values
of S, and S; are equal. The values of S, are also equal to those
of a half-plane and there is no difference in the figure. In order
to investigate the dependence of the SCF on the lengths of the
interface cracks, two special cases in which the lengths of the
interface cracks are given as C;, = C; = 0and C, = C, = 4a
are considered. The values of the SCF are found to have a
negligible difference, which can be seen in Fig. 3, corresponding
curves are coincident. Also, as the ratio a/b approaches zero,
the problem tends to that of bending of two half-planes with a
through crack in both materials, for which the SCF represents
the stress at the tip of the crack and can be taken as a measure
of the stress intensity factor for that particular problem. While,
as the ratio b/a approaches zero the problem tends to that of
bending of two half-planes with an interface crack for which
the SCF in all curves of Fig. 3 approach a value of one. In Fig.
4 the values of the SCF are shown versus a/b and for different
values of Poisson’s ratio, the solid lines and the dashed lines
show the values of the SCF at points A and B, respectively, for
a rigidity ratio equal to D,/D, = 0.5 and the lengths of the
interface cracks are C, = C; = 0. From Figs. 3 and 4, it is clear
that the SCF is rather dependent on the Poisson’s ratio other
than the lengths of the interface cracks.

The SCF of bending of a homogeneous infinite plate with
an elliptic hole is given by the following closed form (Savin,

1961):
g 2(1 +v) [b
B+v) \p
where v is the Poisson’s ratio and p is the radius of curvature
at points A and B, and has the relation p = a*/b. A comparison
between (43) and our results for the homogeneous case is car-
ried out for some of Poisson’s ratios and the ratio of the radius
of curvature to the major axes length, b shown in (43), and the

results were found to be identical. A general expression for the
SCF is derived as follows:

M, max
M,

=1 (43)

Sen =

SCF = Y, kp"

i=1

(44)

where k; are the coefficients determined from the boundary
conditions and the shape. n; are the roots of the characteristic
equation (Hasebe, 1971; Hasebe and Kutanda, 1978). The first
three terms of (44 ) are considered for an approximate expres-
sion as follows:

S40r83:k|‘/é+k2+k3\/§
p b

where n, = ~0.5, n, = 0 and n, = 0.5 in (44) owing to the
elliptical shape of the hole. The coefficients in (45) are deter-
mined for different material constants and rigidity ratios and
for C;, = C; = 0. Using the least squares method and the analyti-
cal results, the values of k;, k;, and k; are obtained and are
shown in Table 1. The used 100 data for each of S, and S; are
those of a/b ranges from 0.01 to 1 at an increment of 0.01. The
SCF, approximate values and errors of (45) are demonstrated
in Table 2. Judging from Table 2, relation (45) is considered
as a good approximation.

(45)

Stress Intensity Factor

The case of a/b equal to zero represents a through crack in
both materials for which the SIF is obtained. The bending and
torsional moments are expressed in the vicinity of the crack on
the X-axis as follows (Hasebe and lida, 1979):

2 ; ] .8
l .
My — My + 2iMyy = 7+ ks
Y Xy 1My, 2(1 + v)V2r LEE “ats
+i(5 + 3v)ks) exp(—i8/2) + (1 = v)(kp — ikd)
X exp(—5i0/2)] (47)

where r and § are the polar coordinates measured, respectively,
from the crack tip and from the line of extension of crack. kj
and kg are the SIF for bending and torsional of material j,
respectively, and they are expressed in terms of the stress func-
tions ¢;(#;) as follows:

Table 1 Values of k,, k;, and k; of (46) for S, for Poisson’s ratios of v, = v, = 0, 0.25, and 0.5

Dy/D, =0 Dy/Dy =05 Dy/D, = 10°
vy =1, 0.0 0.25 0.50 0.0 0.25 0.50 0.0 0.25 0.50
k 0.673 0.772 0.857 0.595 0.674 0.74 3.735 8.092 20.670
k2 1.001 1.006 1.011 1.009 1.011 1.012 1214 1.653 3.294
k3 —-0.006 —0.010 -0.013 -0.010 -0.012 —-0.013 —-0.150 —0.405 —1.284
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Table 2 Error percentage between the calculated values
of the SCF and (46). D,/D, = 0.5, v, = v, =025 and C,; =
Cz = {'.

plb Sa Eg. (46) Error percent

0.0100 68.4003 68.4209 —0.0302
0.0200 34.7339 34.7156 0.0527
0.0300 23.4969 23.4804 0.0702
0.0400 17.8756 17.8627 0.0719
0.0500 14.5019 14.4921 0.0675
0.1000 7.7526 7.7505 0.0274
0.2000 43769 4.3788 —0.0432
0.3000 3.2515 32541 —0.0805
0.4000 2.6888 2.6912 —0.0892
0.5000 2.3511 2.3530 —0.0800
0.6000 2.1260 2.1271 -0.0524
0.7000 1.9652 1.9654 -0.0126
0.8000 1.8446 1.8439 0.0376
0.9000 1.7508 1.7491 0.0962
1.0000 1.6758 1.6731 0.1641
k} — iki

= —22D,(1 + v)) exp(—i/2) b} (to) N (to)  (48)

where 1, = —1 is the value of £; on the unit circle which corre-
sponds to the crack tip. 8 is the angle between the X-axis and
the direction of the crack, 6 = —«/2 as the crack is in the Y-
direction, The following nondimensional SIF is used:

A (3+ V:) kﬂ F” (3+U2) kh‘
() Mol (1 + v2) uMolb
The variation of the SIF of F* and F” for materials 1 and 2,
respectively, is shown in Fig. 5 versus the rigidity ratio and for

different values of Poisson’s ratios. The stress intensity factor
is related to the SCF at points A and B by

13+V|.
Ky=—+ llmJ_ A
YZ0T e 0N

Ky = £ S i oMY,
2 1+.V2p—00

(49)

(50)

where K, and Kj are the SIF at points A and B for bending
(Hasebe and Kutanda, 1978). A nondimensionalized form of

20r; . T g 20.0
At
F ! o § {F°
16} 4 gl ® 1 1o
FA
___________ P 1
12t ¢ 112.0
L visva=0.0
: 025 0.5
08F 180
\\‘ '.I. .-.‘ 0.0
045 . s % 025 14.0
l 0.5
0.0 : : : : 0.0
00 02 04 06 08 LO

Da/D1
Fig. 5 Stress intensity factors at points A and B versus the flexural

rigidity ratios D;/D,, Poisson's ratios of », = »; = 0, 0.25 and 0.5 and
lengths of interface cracks are C; = C. =0

Journal of Applied Mechanics

the SIF at points A and B is expressed in terms of the SCF as
follows:

13+,
Ny = === tim oM 1M,
21+ Uy g0
13+,
Np = 2 Jim v p M4,/ uM, (51)

2 1+V2p—’0

where the values of M% /M, and M%,/uM, in (51) are the SCF
defined by (45). Substituting from (45) into (51), one can see
that the term which has influence on the SIF is that containing
ky. A comparison between (49) and (51) for some cases is
carried out and the results show that the values of the SIF
obtained by (51) are nearly equal to those of (49).

Conclusions

A general solution to the problem of thin plate bending of
partially bonded half-planes with an elliptical hole and interface
cracks on its both sides was obtained. The closed-form solution
was obtained using the complex stress functions approach de-
veloped by Muskhelishvili (1963) and the formulations of
Savin (1961) for the thin plate bending together with the ratio-
nal mapping function technique. Using the technique of the
mapping function, it enables us to analyze awkwardly shaped
structures and make the analytical solution feasible. For exam-
ple, if the mapping function of (Hasebe and lida, 1979) is used,
a solution of bonded dissimilar half-planes with a square hole
on the interface can be obtained. A comparison between the
problem of bending of a homogeneous infinite thin plate with
an elliptical hole and the results of this paper for the homoge-
neous case was carried out. Bending and torsional moment dis-
tributions on the boundaries have been obtained and are shown
in Figs. 2(a) and 2(b). The relation of (41) among the bending
moments, My,, My,, and My on the bonded boundary M is
satisfied. The stress concentration factors, S, and Sy have been
obtained for some material constants and rigidity ratios and all
dimensions of the elliptical hole. From the figures it is obvious
that the length of the interface cracks has a negligible effect on
the stress concentration factor, since there were no such loads
transmitted between the two materials for the case of loading
considered here. The stress concentration factor is shown to
vary only for different a/b ratios while Poisson’s ratio also
shows a small effect. An expression for the stress concentration
factor has been obtained by (45) and its accuracy is investigated
through a comparison whose results are shown in Table 2. Val-
ues of the SIF were derived in two expressions for the case
when the ratio a/b tends to zero for which the problem tends
to that of bending of two bonded half-planes with a through
crack in both the materials.
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M, PSP
APPENDIX __-o—g[w(o'](l_f/|)+W(0')(l+V|)]
Derivation of (5) 2Dy(1 = vY)

Since relation (14) should be satisfied at the remote ends, in = KMy, 1+ + 1 — 53
terms of the complex stress functions it is expressed by 2D5(1 — vd) Lw(o)( va) + w(a)( va)l. (33)

7 wio) o 3

(o) + (o) $i (o) + ¢i(o) Noting the relation on the interface of (18), y is finally ex-

pressed as follows:

= —[qba‘(cr) L M(o)]. (52)
w'(o) _ Dl =¥} 54
Substituting (4b) into (52), D1 =Y’ }
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Frictional Contact Between the

0. Y. Zharii

Department of Theoretical
and Applied Mechanics,
Kiev University,

64 Vladimirskaya Strest,
Kiev 252017, Ukraine

Surface Wave and a Rigid Strip

A problem of frictional contact between a running surface wave and a motionless
rigid strip is considered. The corresponding mixed boundary value problem of elasto-
dynamics is reduced to a singular integral equation for the normal stress distribution
and a closed-form solution of it has been found. Boundaries of the contact zone

are determined from a system of transcendental equations involving trigonometric
functions. Also, simple formulae obtained for kinematic characteristics of solution
(tangential velocity inside the contact area, velocity and slope of the free surface
outside it). The problem considered represents a limiting case of operating ultrasonic
motor when it is completely braked by an external tangential load force.

1 Introduction

Precise theoretical modeling of motion and energy transfor-
mation in ultrasonic motors is of great interest from both theo-
retical and practical viewpoints. The general standpoint of the
author with this respect has been outlined recently (Zharii and
Ulitko, 1992; Zharii, 1993).

One of the most interesting types of motors is a traveling
wave ultrasonic motor. Several attempts to develop its model
are due to Kurosawa and Ueha (1988), Hirata and Ueha
(1993), Suzuki et al. (1990), but as of today, no consistent
theory of it has been developed.

In papers by Zharii (1994) and Zharii and Ulitko (1994),
two limiting cases of operation of the motor corresponding
to cases of vanishing and infinitely large friction have been
considered. Both these cases are, of course, unrealistic. But the
solutions obtained are surely necessary for the development of
grounded ideas concerning nature of motion transformation
from elastic waves to rigid bodies in frictional contact.

There is one more limiting case that is worthy of consider-
ation in the course of construction of a complete model of a
traveling wave ultrasonic motor. We mean a situation when the
tangential load is equal to the pressing force multiplied by a
coefficient of dry friction, and consequently, the rotor (rigid
strip) is completely braked. In this case, evidently, tangential
stresses in each point of contact area are equal in magnitude to
the normal pressure multiplied by the friction coefficient. This
problem is a direct generalization of the smooth contact problem
considered by Zharii and Ulitko (1994).

2 Formulation of a Problem

For theoretical modeling, the stator of an ultrasonic motor is
considered as a piezoceramic plate of thickness h: —h/2 < z
< h/2, polarized in the z-direction. The plate is a half-plane in
shape —o < x < o, y > 0 (Fig. 1). Vibrations are excited by
the running electric field,

E, = E; cos (kx — wt), (1)

where k is the wave number, w is the angular frequency of
excitation, and A\ = 27 /k is the wavelength.
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The rotor is modeled by a rigid strip (Zharii, 1994). The
equation of motion of the plate in the plane-stress approximation
is (Grinchenko et al., 1976, 1989):

¢} grad div u — ¢} rot rot u

9%

— (1 + v)dyctgrad E, = PR

(2)

where u = i, (x, y, t) + ju,(x, y, t) is the displacement vector,
c = [p_g;l,_-l(l - vﬁ)]—uz’ ¢ = [2psf.(l + U)]—m 3)

are the longitudinal and transverse wave velocities, and v =
—s%, /55, is the Poisson’s ratio. These and forthcoming notations
have been universally accepted (IEEE, 1984; Berlincourt et al.,
1964).

Taking into account the specific form of excitation, we pass
on to the movable coordinate system, £ = x — wt/k, y. In this
system, equations of motion (2) become

¢? grad div u — ¢} rot rot u

2 a2
101+ v)duciBksin b — 228 ~ 0, (4)
k* ot

In the absence of the rotor, excited in the stator are the run-
ning waves of wavelength A. If now a rigid rotor is pressed to
the surface y = 0 by means of the force P per unit wavelength
and per unit thickness, after decaying of the transient process,
contact areas arise (Fig. 1). Also, we suppose that a tangential
force of magnitude T acts on the rotor in the positive {-direction.
When T = pP, the rotor cannot move under the action of
tangential stresses, and tangential stresses inside the contact
area are equal in magnitude to the normal pressure multiplied
by the friction coefficient p.

Further we use a dimensionless coordinate s = k§. Suppose
that the contact area covers a segment o < s < 6 (Fig. 2).
Within this zone, normal displacement for an absolutely rigid
rotor are constant. Therefore, boundary conditions can be writ-
ten as

u)‘iyﬂﬂ = Uyo, T{}"y-ﬂ = #‘Ia—y!yﬂﬂ = _,U-O'),I).=0,

a<s§s<Ad. (5)

We took here the negative sign because in the slip zone
tangential stresses are positive while normal ones should be
negative. Also, we suppose that the tangential velocity is nega-
tive everywhere inside the contact zone, like in the smooth
contact problem (Zharii and Ulitko, 1994). The second of the
above equalities is true only when it is so. Stress resultants are
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Fig. 1 Geometry of the problem

equal to prescribed normal and tangential forces (both P and T
are positive),

bk ik
f o,d¢ = —P, f TedE = T = uP.

afk wfk

(6)

On the free surface, both normal and tangential stresses van-

ish,
Oyly-0 =0, Telyo =0,
—r<s<aand d < s <m (7)
In_ thg above equations, quantities & and & are so far undeter-
mined.

3 Derivation of an Integral Equation
Representing unknown contact stresses by the Fourier series,

o, = f(s) = J;" - Zf,, cos ns + f | sin ns,
n=1
Tey = g(s) = ? + Z g, COS ns + g, sin ns (8)

n=1

= —uf(s),—mT<s<m,
and taking into account that the latter equality implies propor-
tionality between Fourier coefficients of fand g, we obtain the

general solution of (4) in the way similar to that in the previous
work (Zharii and Ulitko, 1994). This solution is

—(1 +.U)d1|En Ii(kz'{"]’ )

— (k2 AV Y =¥y
X (% Yaje 7 A 3ie -+ I] sin § + —Uﬂ(y)
AR 2
k s f 2 —ny -1
A Z [~ (k> + y}e ™" + 2y,y,e "] sin ns
R p=1
k o

Z " [(k* + y3)e ™™ — 29,7, "] cos ns

n=1

pciAg

_pr: A Z;;f"[%e Y — (k% + y3)e ™) cos ns
YAV

Z uf [2k%e " — (k* + y})e "] sin ns,

B pes AR n

n=1
U, = (l + V)dﬂEl)

i K+ v} —(k* + y3e " + 2k 7
Y1 Ag

cos § + Vu;_)’ )
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2 E f'[ (k* + y3)e "™ + 2k%e™""? ] cos ns

ZAR e}
bt Z L [—(k* + y3)e ™ + 2k% "] sin ns
p-‘.’.‘zAR e
Z ”f"[ —2y1726""Y + (k* + y1e "] sin ns
pf.'zAR i
Z ,Uf [2_’”_’,6 nyy
p(zAn i N

(9

where, as earlier (Zharii, 1994, Zharii and Ulitko, 1994), we
denoted v, = (k* — w?/ciy)" and Ag = (k* + y3)? —
4k*y,y, as the Rayleigh determinant.

Having written these explicit expressions for displacements,
we can calculate the tangential particle velocity d,|,-o =
—wdity/ds|,., and the half-plane boundary slope du,/ds|,-o.
We do this using integral representations of Fourier coefficients
that follow from (7) and (8),

— (k* + yHe "] cos ns.
Y

&
o = lf f(s1) cos ns dsy,
T

1
e ;J. f(s1) sin ns,ds, (10)
and the value of sum,
= 1 5
sin ns = — cot — . 11
Y sin ns 2c0 5 (11)

n=I|

In the result of transformations we obtain

ﬂx]y:l] = _Vl:

ol dS|:' §
2

I &
-t [ sy
0 o

dl
% = UI:Sin.s‘-l—ﬁ(f(S) + 79)
y=0 KA[:

pd

ds

‘5 —
lﬁf f(s;)colsrz Sds]]. (12)
0 a@
Here

2 L 2Nep2 2
i — +u}d3.Eu(k y2)(k” + v3)

s

Y18g
=w fk”"z - (13)
k* + v3
["y]
‘\
-7 o 1} & :

Fig. 2 Normal and tangential stresses
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are amplitudes of the vertical displacement and tangential veloc-
ity of the boundary y = O in the absence of a rotor. Other
notations mean the amplitude of excitation of a running wave
and the pressing force per unit wavelength,

E+ vy kP
Ag = —(1 + V)ds B pcl ——522, oo =1—. (14)
Yi 2
Parameters R, «, and u, are
R = 2kVy1Ys =102 K — vi
k> + y3’ k 2yiyv2— (K + 9D
=P (15)
Y1

Note that all notation coincide with those used earlier by Zharii
(1994) and Zharii and Ulitko (1994), with the exception of a
new quantity u, and A, denoted in those papers by A. Now we
use the notation A for an uppercase « for other needs (see
below).

Satisfying the kinematic contact condition

duy

=3 0,
ds

a<s<é, (16)

y=0

that follows from (5), on the base of the second of (12) we
come to a singular integral equation with respect to an unknown
function f(s):

5 — F

1]
uﬂw+§fﬂMmt ds,

= —og — kAgsins, a<s<éb (17)

Transforming both independent and dependent variables,

r,l=tan%, m=tan§2—'. (p(n)=f(s}c:052%, (18)

we reorganize (17) to the standard form,

k @ d
mmm+—f L) _ Gy,
Tda T — 7
i e AR S (19)
2 1 2
The right-hand side is
G(n) = —
(m) plaol+n2
n n
o e e DAy o l——, (30
o v XM Tr 0

In the transition from (17) to (19) we used the first of static
conditions (6) that in terms of the new function ¢ takes the
form

A
f w(n)dn = —woq. (21)
A

4 Solution of the Integral Equation

An exact general solution of Eq. (19) can be written using
well-known formulae (see, for example, Mikhlin, 1949). In our
case we have

Journal of Applied Mechanics

_ K 1
w+ kP (p—A)A -

1(E-4"Aa-y"
X~ L = G(0)dg

B G

ui + K?

e(n) =

C
+ I-m "
(n—Ay ™A -1n)

where C is an arbitrary constant. A new parameter m is deter-
mined as

, (22)

1 .
m:—lnu'

2wl g — ik

0=Rem< 1. (23)
In the problem considered, it is a real number and on the base
of the latter equality we may introduce the following useful
quantities:

Hi

. K
Cos mm = —'W, Slnm‘:‘l’-——m. (24)

An arbitrary constant C can be excluded upon substitution
of the general solution (22) into the static condition (21). Inte-
grating under the integral, we use formulae for integrals listed
in the Appendix and find that the contribution of G (7) vanishes.
In the result, we obtain

C = —oy sin mT.

(25)

After that, using (A6), we calculate three integrals in (22)
originated by the three addends in (20) and obtain an expression
for (n) in the form

®(n)
(n—A)""™A -g)"

The right-hand side is singular in form at the ends of the contact
area, so we do not write down an explicit formula here (later
we will find a more convenient expression).

Demanding that contact stresses and, due to that, @, are
bounded at the ends of the contact area at n = A and n = A,
we find that the numerator of this solution must vanish at these
points,

w(n) = (26)

D(A) = P(A) = 0. (27)

These conditions result in a system of transcendental equations
that after some transformations takes the form

m(bd — a) = 2mmw

p sin > — m sin mm
Xsiné_asin(l+m)a+(l_mm:o,
2 2
1 - — 2
psin( m}(62 @)t mﬂ—(l — m) sin mm
R il W Lot el L (O
2 2
where p = —oo/A,.

Making use the specific form of representation of w(n) (26)
and conditions (27) expressed by Eqs. (28), we perform an
identical transformation

]
(n—A)'""(A - n)"

X [‘I’(n) =

w(n) =

A= _n-A
A_“d‘tll'(,"t) ———A_A@(A):l (29)

and instead of (22) obtain another formula for ¢(n),
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..l..
o b f 6Lt
® (G =A)T (A — DL
Calculating integrals in (30) as described in the Appendix

(see (A9)) and consistently simplifying the expression obtained
using Eqs. (28), we obtain the final formula for ¢(n):

(30)

8
w(n) = 2A, sin mm cos” % cos!™ 5 (n— A"

me + (1 —m)d + s
2

and, using the last of (18), find the normal stresses distribution,

X (A = n)'"" cos® % cos (31)

f(s) = 2A, sin mm sin™

ooz = ma+ (1 —m)d+ s
X sin cos .

2 2

(32)

5 Kinematic Characteristics

Applying the transformation (18) to expressions (12), we
obtain necessary formulae for the tangential velocity inside the
contact area (a < 5 < §):

U] y=o = —V[cos s+ —‘;—' sin §

1+
ReAy

+ (0’0+ (n* + l)so(n))} (33)

(here Eq. (19) has been used), and expressions for the velocity
and the free surface slope outside the contact zone (—7 < s <
aeand § < 5 < 7),

tyly=g = —V[cos s+ RU—KL(I + Kn)

— P’l ( 2 f tp(m)dm]
h =" '
L =U sins+ﬂ]—(pl—mﬂ
ds y=0 KAD

1 2 1 fﬂ W(Ua)d’?l]
— + 1) = ——X1. (34
+An(n )TT i (34)

Calculating integrals in the latter equations (see formulae
(All) in the Appendix), and again using Egs. (28), we find
simple explicit formulae: inside the contact area

2
delo= —V]| coss + Elsins + o+ LEB 7| (35
R Rk

and outside it

ty|y=o = —V[cosx + %sins + L— %F(s):l ,

= Uh(s). (36)
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m
0.540
0.532
5 0.524
0.520 4
0.516 3 0.516
0.5124 2
0.508 1 0.508
0,504
wfwg 1

Fig. 3 Frequency dependences of the quantity m for different values of
the coefficient of dry friction: (1) p = 0.05, (2) & = 0.1, (3) u = 0.15, (4)
pn =02 (5)u=025

Here f (s) means f(s)/Ay and

( = 22
~2 sin" L2 gip'-m g=%
2 2
Xcosma+(l _m)6+s,—frés<a,
h(s) = 2 (37)
L
2 sin" — s,in'-“s;"JS
Xcosm+(l;m)6+s,§'<s<1r.
The constant £ equals
1+ u?
L= ZR:I [mcosea + (1 —m)cos b
—cos (ma + (1 —m)é)]. (38)

6 Analysis of Solution

Consider first the quantity m that according to (23) depends
on both the friction coefficient and the frequency of excitation.
Its value determines the character of stresses (32) and kinematic
characteristics (35), (36) near the ends of contact area. Plots
of m for different y are presented in Fig. 3 in the frequency
interval from zero to the Rayleigh wave resonant frequency wy
= kcg where cy is the Rayleigh wave velocity calculated for a
given value of Poisson’s ratio. All data are calculated for the
PZT-4 ceramics having v = 0.33 and ¢/, = 0.932 (Berlincourt
et al., 1964).

In the case of frictionless contact we had m = 0.5 for all
frequencies and plots of stresses and kinematic characteristics
were symmetrical with respect to the center of contact area
(Zharii and Ulitko, 1994). Now this symmetry disappears: for
4 > 0 we have m > 0.5. The more is m — 0.5 (though this
difference is rather small), the brighter is the difference between
local distributions of all field quantities near the front point of
contact s = 6 (they become sharper) and its back point 5§ = «
(they become smoother). It is seen from Fig. 3 that m growths
with u and increases together with w. It means that working
conditions for elastic material become less favorable near the
resonant frequency compared to those at low frequencies.

Let us consider transcendental Eqs. (28) determining bound-
aries of contact area. Asymptotic analysis of them for low values
of the loading factor p shows that when p < 1, approximate
formulae are valid:

a=-2 " "p, 6=2"=p (9
m 1—m

therefore § > |a|. In the smooth contact problem (Zharii and
Ulitko, 1994) we had the following relation between the half-
length of contact area a,, and parameter p:
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0.72

-7 =194 a, b 2.09 3

Fig.4 Boundaries of the contact area in the problems of smooth contact
(thin line) and for frictional contact (thick line) at m = 0.532 (x = 0.2, @
= keg)

a,, = 2 arcsin \E, Qg = 2\(; for p<1. (40)

As m > 0.5, we have @ > —a,, and § > a,,.

Analysis of (28) also showed that contact areas merge all
together, i.e.,, § = —a = 7 when p takes the value sin® mr <
1. In the smooth case, as it follows from (40), this occurs at p
= 1. However, actual values of p for which the solution of the
problem is correct, are significantly less than that indicated.
Analysis of the tangential velocity distribution (see below)
showed that the boundary condition (5) is valid only for p =
0.72, so quantities o and 6 are plotted for these values of p.

In Fig. 4 we plot contact area boundaries in the frictional
problem determined by (28) and those in the smooth problem
(40). It is seen from the graphs and is confirmed for low p by
(39) that the center of contact area is displaced to the right,
The maximal relative displacement of it, (8 + @)/(6 — a), is
equal to 0.032 at the minimal pressure, p = 0. The length of
contact area increases compared to the smooth case: Maximal
value of (§ — @)/(2ay,) = 1.013 occurs at the maximal possible
value of p = 0.72 (see below ). These results qualitatively agree
with those known for statics (Johnson, 1987).

Using formulae (32), (35), and (36) in Fig. 5 we present
normal stress distributions, tangential velocity of the half-plane

S O
00.55‘ —y—l.ﬂ

o / _\ o
_& '\Z{w—“-“ _DN——V;;ME;

#y iy
ay Ay

- -1‘591//'\9 64 - —7—1.94 i / 52 o

Uz 8
. oo/ o W . 7

-0, “\f_ \/:T)_'M —ﬁi\/
y —0.57
(e) (d)

Fig. 5 Vertical displacements of the boundary of the half-plane and
normal stress distributions (upper graphs) and tangential velocity of the
surface (lower graphs) for values of p: (a) p = 0.087, (b) p = 0.25, (¢) p
=05, (d)p =072, m = 0532 (u = 0.2, @ = kCpg)
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boundary, and the shape of the surface found from the latter of
(36), namely

uy=U[l+J. E(S.)ds.], —-T=s5s=a,

;5 U[l —Jﬂrﬁ(s.)ds.jl , §=s=m. 41

Thanks to the proper choice of the integration constant, we
eliminated an arbitrary constant that enter the function Us(y)
in (9) and now have uy|,—g -+, = U irrespective of the value
of pressing force P (see Zharii and Ulitko, 1994).

In these graphs we plotted dimensionless quantities 7, = o,/
Ay, i, = u,/U and T, = v,/V. As in previous papers we assume,
that due to dissipation, U and V achieve large but finite values
at the resonant frequency w = kcg.

It is seen from Fig. 5 that the amplitude of velocity at the
front point of contact s = 6 is bigger than at its back point, s
= a. As in the smooth case, nonuniformity of the velocity
distribution inside the contact area, |u#,(8)/min u,| increases
together with p. At p = 0.72 we have i,.(s) = 0 ats = —0.73
(Fig. 5(d)). When p exceeds this value, we have formally 4.(s)
> 0 within some interval. Consequently, in this interval 7,
would change its sign. So, for p > 0.72, boundary condition
(5) and the solution obtained become incorrect.

Conclusions

In this paper, a solution of a new mixed boundary value
problem of elastodynamics has been found. The limiting case
of it for vanishing friction has been solved by Zharii and Ulitko
(1994).

The solution obtained displays several new features. First,
asymptotic behavior of stresses and kinematic characteristics is
determined by the quantity m that depends on both the friction
coefficient and the frequency of excitation. Though deviation
of m from its value 0.5 in the smooth problem is small, it causes
significant difference between values of the tangential velocity
at front and back contact points (see Fig. 5). One more differ-
ence is that now the tangential acceleration is infinite in points
near the ends of the contact area not only inside it, as in the
smooth case, but outside it as well, i.e.,at s> a — 0,5 = 6 +
0 (see (36) and (37)).

This solution gives the necessary information of the structure
of an elastic field near the ends of the contact area in the general
problem of contact interaction when partial adhesion occurs in
the center of the area, and slip near its ends. The problem
considered is a limiting case of a general one when due to
tangential forces, the adhesion zone shrinks to a point. The very
complicated general problem is under investigation now.
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APPENDIX

Calculation of Cauchy principal value integrals in this work
is performed in the same way as in a previous paper (Zharii,
1994). First, we introduce notations

= _ __n
ql)(n) = lu QI("?) - 1+ nz N qZ(Tfl) - 1+ ??2 ]
1 n
gs(n) = ETE g4(n) = arn)’ (A1)

and consider integrals arising in (22),

L 2~ A) ™A =)
=1 [ GO a,

We introduce an auxiliary function of a complex variable z
and a complex parameter u,

s ) s B < 9
Z—u

(A2)

Hz) = q-(z). (A3)

This function is single valued in the complex z-plane cut
along the section (A, A) connecting its branch points. Calculat-
ing the integral of #(z) along the closed contour L which by
pass the segment clockwise we find

S Lo
2mi ﬁ Ha)dz = 2m'£ 7O - 27”'.’; (Ol
(A4)

where 7 and 7 are the limiting values of 7 on the upper and
lower sides of the cut, respectively.

= gin mr¥(u),
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On the other hand, the contour integral in (A4) is equal to
the sum of residues of the integrand at points z = +i, z = u
and z = o (the latter is nonzero only for r = 2).

Applying the Plemelj formula (Markushevich, 1950),

() = 3(T7(n) + ¥ (7)), (AS)

(note that the only residue at z = u takes different values at
upper and lower sides of the cut) we finally obtain
1

sin mmw

T, = [ X res #z)lu=y

r=xjm

+ cot mm(n — A)'""(A - 9)"g(n). (A6)

These formulae are used for r = 1, 2, 4.
In (30) we calculate somewhat different integrals for r = 1,
2! 4‘

& _ —t — m—1
‘I',(n)=%~[‘ G- oya. (A7)

E—n
Denoting
—A)Y™ _— A =1
Ko = EZ A T@Z BT oy (a8)
Z—u
in this case we obtain
1
U, =—— [ X res F(z))umn
sinmm 2,
+ cot mm(n — A) (A — )" 'q.(n). (A9)

In derivation of (25), we used the last formula for r = 0
(the sum vanishes) and the following formula:

1M dg 1
?r.[«. (& - A'""A =" sinmr’ (Al

Nonsingular integrals arising in (34) can be calculated with-
out use of the Plemelj formula:

1 A — AY'(A — I=m
—f C-AUA—D ™" Od = — [ res %)
7 Ja Lo sinmm
= |np—Al"In - A" "g,(m)], (All)
where
_A m . I-m
Hoy=EZASC=AT . (An)

-1
Either upper or lower sign are taken for n > A and n < A,
respectively.
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The uniaxial constitutive law for an adhesive is studied by constant strain rate tensile,
creep and relaxation tests. The S-D effect of the adhesive is taken into account by
using the Raghava yielding criterion in a three dimensional constitutive formulation.

The obtained constitutive law is then used to analyze a single lap joint and a butt
Jjoint by a finite element method. Constant cross head speed tensile and creep loading

D. Baptiste

cases are examined. For a butt joint, the results show that the viscous effect and the

influence of the hydrostatic stress must be taken into account due to the variation of
the hydrostatic stress and of the loading rate in the adhesive layer as function of its

D. Frangois

thickness. A comparison with experimental results is also given. A good agreement

between viscoplastic calculations and experimental results is obtained for single-lap

Laboratoire MMS-MAT,
URA 850 CNRS Ecole Central Paris,
92295 Chatenay Malabry, France

Introduction

Structural adhesives exhibit some sort of viscoelastic and
viscoplastic behavior, especially ductile adhesives at high stress
levels and at elevated temperatures. The redistribution of stress
and strain in an adhesive joint during viscoelastic-viscoplastic
deformation influences considerably the strength of the joints.
In addition, adhesives usually exhibit different behavior in ten-
sion and in compression (S-D effect), which is associated with
the important role of the hydrostatic stress in polymer yielding.
In order to calculate more accurately the mechanical behavior
of adhesive joints for engineering design, a more complete con-
stitutive formulation for the mechanical behavior of adhesives
is needed which accounts for these specific properties of poly-
meric materials.

The time-dependent behavior of adhesive joints has been
studied by a number of investigators. Hayashi (1972) studied
analytically the creep properties for a double lap joint. Delale
and Erdogan (1981) used the Laplace transformation technique
to study a single-lap joint with a viscoelastic adhesive. More
recently, Groth (1990) studied viscoplastic stress in a single-
lap joint using different rheological models. The S-D effect for
adhesives was taken into account by Gali, Dolev, and Ishai
(1981) and Raghava, Cadell, and Yeh (1975) for polymeric
materials by introducing the influence of hydrostatic stress in
the yield criteria. But it seems that little work has been con-
ducted taking into account adhesive viscous and S-D effects for
stress analysis in adhesive joints.

This paper presents a stress and strain analysis of adhesive
joints using a viscoplastic adhesive model. The experimental
study is performed on a commercial adhesive system Hysol
EA9309.2. The uniaxial constitutive equation of the adhesive
is investigated by constant strain rate, creep, and relaxation
tests. The obtained uniaxial law is then generalized to three
dimensions by using the Raghava yielding criterion (Raghava,
Cadell, and Yeh, 1975), which takes into account the different
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joints. A reasonable result is obtained for butt joints and the discrepancy is attributed
to interfacial debonding.

behaviors of the adhesive in tension and compression. The ob-
tained constitutive model for the adhesive is used for finite
element analysis. The calculated results are then compared with
experimental values.

Mechanical Behavior of Bulk Adhesive

The Hysol EA 9309.2 adhesive used in our analysis is a two
constituent epoxy system which can be cured at room tempera-
ture. To obtain short-term stable mechanical properties, the ad-
hesive was cured for one week at room temperature and post-
cured for three days at 50°C.

The uniaxial tensile behavior of the bulk adhesive is deter-
mined by using standard ISO 1/2 specimens fabricated from a
Imm plate of hardened adhesive in accordance with NFT91-
034 standards.

The mechanical tests, consisting of constant strain-rate ten-
sile, short-term creep, and relaxation tests, are performed at
room temperature with a computer controlled testing machine.
The strain is measured by a slip gage extensometer, The experi-
mental results are presented in Figs. 1(a) and 1(b), 2 and 3.

These experimental results, as well as loading and unloading
tests (Hu, 1991), show that the viscoplastic deformation of the
adhesive is very important and that the adhesive displays little
strain hardening (Fig. 2). The creep tests (Fig. 1(5)) show that
the creep strain is negligible at low stress levels; but at high
stress levels, the three stages of creep (primary, secondary, and
tertiary) occur. The secondary creep stage dominates most of
the adhesive creep life. Therefore, in the following model, only
the secondary creep is taken into account. A creep threshold of
# = 20 MPa, based on the creep tests, is proposed, below which
the creep strain is neglected.

Based on these considerations, a Norton-type (Lemaitre and
Chaboche, 1988) viscoplastic law is used in a uniaxial formula-

tion:
) (o' - 6')*
E =
i

where ¢ is the creep rate at an applied stress o. y, k are material
constants, which are derived from the creep and the constant
strain rate tension tests, giving

u = 54 MPa, k= 8.99,

As shown in Figs. 1-3, the uniaxial model can describe well

ey}
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Fig. 1{a) Simulational and experimental creep tests for the bulk adhe-
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Fig. 1(b) Creep tests for the bulk adhesive

the experimental results for the bulk adhesive (the damping
cocfficient is defined as § = (¢ — €)/¢). For the relaxation
case, it is seen that at lower applied strain levels, there is a
difference between the experimental and the calculated curves.
This difference comes from the fact that at lower applied strain
levels, the primary creep is very important, which is not taken
into account in our model.

In the sections which follow, this uniaxial equation is used
as the basis for a three-dimensional constitutive formulation.

Three-Dimensional Formulation

In order to analyze the stress distribution in adhesive joints,
a three-dimensional constitutive formulation for adhesives is
necessary. In our study, the method outlined by Betten (1989)
is used and an equivalent stress from the Raghava criterion
(Raghava, Cadell, and Yeh, 1975) is proposed to account for
the different behaviors of adhesives in tension and compression.

For creep mechanics, the constitutive equation can be written
in a general form,

60
50 - : . * & @
- A AF
%40 i ‘ a B B &8 @
a cal v=10-2/s
g 30 1 ¢ exp v=10-2fs
4 ¥ === cal v=10-3/s
L] exp v=10-3/s
10 - — gl v=10-4/5
o exp v=10 -4fs
0 2 4 6 3 10
strain(%)

Fig. 2 Simulational and experimental constant strain rate tensile tests
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Fig. 3 Simulational and experimental relaxation tests

é=f(o,w, A) (2)

where o is the applied stress tensor, @ the damage tensor, A
the tensor of anisotropy, and & the creep strain rate tensor.

In our case, the anisotropy and the damage of the adhesive
are neglected; furthermore the nonlinear stress tensor terms are
also neglected for simplification. Under these conditions, Eq.
(2) yields:

(3)

where ¢, and ¢, are two scalar coefficients depending only on
the experimental data and the stress invariant, s is the deviatoric
part of stress tensor o; and I is the unit tensor. , and y, are
identified from Eqs. (3) and (1), giving:

1 —2v

€ =@l + pis

po= i (0= O 4)
Y
©, =(l_+:’_){o_§_)_ (5)
I o

where v is the Poisson’s ratio and o is an equivalent stress. In
our case, to take into account the S-D effect of the adhesive,
an equivalent stress other than that of Von Mises should be
defined. For polymeric materials, the Raghava yielding criterion
is widely used:

I+ (6. — o)l = 0.0, (6)

with
Jog = (L.5sy5)% (7
[ =0y (8)

where o, and o, are the elastic limits in compression and in
tension, respectively. From this yielding criterion, the equiva-
lent stress is obtained:
ION— 1) + (PPN = 1)? + 4J3,0)%°
Fag = 2N

9)

where \ is defined as o./0o,.
The general constitutive equation can then be derived from

Eqgs. (3), (4), (5) and (9):
(1 —2v) (1 +wv)

€ ="—1" (04— O+ ——(
uw

8
o Oog — 0 —.

of

(10)

From Egq. (10), it is found that the Norton constitutive equation
is a special case in which incompressibility and the Von Mises
equivalent stress are assumed.,

This constitutive equation is implemented into the finite ele-
ment code ZEBULON (Burlet and Cailletaud, 1991 ). This finite
element code is capable of performing linear and nonlinear,
static, and dynamic analyses. The Poisson’s ratio is a function
of deformation, and here, for simplification, we chose v, = 0.5
when the adhesive is plastic. A is taken to be 1.2, as is commonly
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Fig. 4 Calculated tenslon and compression stress-strain curves at a
strain rate 10™*/s for the bulk adhesive

used for polymeric materials (Adams and Wake, 1984). The
uniaxial curves in tension and compression for the adhesive are
calculated at a strain rate of 107 s™' (see Fig. 4) in order to
check the finite element code. The result shows that the present
constitutive model can reflect the different behaviors of the
adhesive in tension and in compression. This constitutive rela-
tion is then used to analyze the stress distribution in adhesive
joints.

Viscoplastic Stress Analysis of Adhesive Joints

In the following section, a single-lap joint in creep and a butt
joint in constant cross head speed tension tests are examined
with emphasis on viscous and S-D effect on adhesive joints.
The adherent is an aluminium alloy with mechanical constants
E, = 73000 MPa, v, = 0.29, and the elastic constants for the
adhesive are E, = 1950 MPa, v, = 0.36.

Single Lap Joint in Creep. The finite element mesh of a
single-lap joint is shown in Fig. 5 (the adhesive thickness is
0.5mm). The elements are two-dimensional, eight-node, qua-
dratic elements which can be used for plane-stress, plane-strain,
and axisymmetric problems. Geometrical nonlinearity was not
included, thus limiting the analysis to material nonlinearity with
small displacements. The boundary conditions are shown in
Fig. 5. A pressure corresponding to an average shear stress of
approximately 20 MPa is applied for a short time, and then it
is kept constant on the line AA' (Fig. 5). The calculation is
performed under a plane-strain condition.

The distribution of the shear stress and normal stress in the
joint at the mid line (x1) (Fig. 5) is shown in Figs. 6(a) and
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u=0.0 A
T T ) il I T =

I | _I 1l 1 1 -

-
-
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Fig. 5 Finite element analysis of a single-lap joint
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Fig. 8(a) Creep shear stress distribution along the mid-line of single-
lap joint
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Fig. 6(b) Creep normal stress along the mid-line of single-lap joint

6(b). The shear stress concentration at the joint ends is relaxed
by creep. The shear stress tends to be homogeneously redistrib-
uted along the joint due to the viscosity of the adhesive. By
contrast, the normal stress has a tendancy to increase at the
joint ends. The asymmetry of the peel stress is due to a small
rotation of the applied force line arising from the asymmetry
of the joint.

The displacement at the middle of line AA' as a function of
time is plotted in Fig. 7. At this loading level, the displacement
of the joints continues to increase and creep fracture is unavoid-
able. This loading level is therefore unacceptable for engi-
neering design. The relaxed shear stress is compensated in the
middle of the joint, enhancing the stress level there (Fig. 6(b)).
Thus the shear stress (minimum stress) at the midpoint of the
joint should always be kept at a value less than the creep limit
to avoid creep failure. This is contrary to the ultimate joint
strength that is governed by the maximum stress or strain as
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g e
0.04 {
_ |
0.02
]
0 150 300 450
time(s)

Fig. 7 Displacement evolution as a function of creep time
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Fig. 8 Finite element analysis of a butt joint

proposed by Hart-Smith (1981). This viscoplastic model can
provide a useful tool for creep design of adhesive joints and
for studying the viscous influence of adhesive joints.

Butt Joint in Tension. In order to investigate the S-D effect
in adhesive joints, a butt joint is examined by a finite element
method using the obtained constitutive adhesive model. This
kind of joint has been examined by many authors. Adams et
al. (1978) studied the elastic case for this type of joint by finite
element method; Anderson and DeVries (1989) used fracture
mechanics to evaluate the joint strength., This kind of joint is
particularly interesting for our analysis. If the cross head speed
is kept constant, the loading rate and hydrostatic stress of the
adhesive layer changes with varying thickness. These two fac-
tors determine the mechanical behavior of the adhesive layer.

In our analysis, the butt joint consists of two aluminum alloy
cylinders bonded with the same adhesive as before. Mechanical
behavior is investigated both by a finite element analysis and
experimentally. The finite element mesh is shown in Fig. 8.
Due to the symmetry, only a quarter of the joint is analyzed.
The thickness of the adhesive layer is chosen as 0.5mm with a
cylinder diameter of 10mm. A displacement of 0.08mm is ap-
plied for 13 seconds, corresponding to a cross head speed of 5
X 10 *mm/s.

The axial and radial stress distributions are shown at the
midplane of the adhesive in Figs. 9(a) and (b). There is little
variation in the axial stress o, during loading when the adhesive
begins to deform plastically. This stress remains almost constant
in the joint except near the ends, which are perturbed by the
edge singularity. In the central region, the axial stress is slightly
higher than the average applied stress needed to satisfy the
equilibrium condition. But o,, decreases with increasing load-
ing. An important hydrostatic stress is induced in the joint due
to the difference in Poisson’s ratios between the adherents and
the adhesive. This stress varies in the same manner as o,, and
it reaches about 28 MPa. The zone influenced by the edge
singularity decreases with decreasing adhesive thickness.

The average stress-strain relation of the adhesive layer is also
studied as a function of its thickness (see Fig. 10). All of the
calculations are performed at the same cross-head speed of 5
X 107*mm/s. The results show that the tensile stiffness of a
butt joint decreases with increasing adhesive thickness due to
the diminution of the hydrostatic stress in the adhesive layer
(Fig. 11). The variation of the maximum stress in the adhesive
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Fig. 9(a) Axial stress distribution along the mid-line of butt joint; (b)
radial stress distribution along the mid-line of butt joint

layer is shown in Fig. 11. For a joint with adhesive thickness
of 0.1, 0.3, and 0.5 mm, there is very little variation of the
maximum stress (this is confirmed experimentally). For the
joint with a 3mm thickness, there is an increase of the maximum
stress and this stress decreases when the adhesive thickness is
further increased. Finally, the behavior of the bulk adhesive
dominates for very large adhesive thicknesses (approximately
the diameter of adherent).

This variation comes from competition between the tensile
loading rate of the adhesive layer and the hydrostatic stress state
as a function of the adhesive thickness during a constant cross-
head speed test. In fact, for thinner adhesive thicknesses, the
loading rate of the adhesive layer increases and the viscosity
has little time to manifest itself. But because the hydrostatic
stress is higher, a high equivalent stress (as defined previously)
is induced, and it increases the relaxation rate. For the adhesive
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Fig. 10 Average stress and strain relations of adhesive layer as a func-
tion of adhesive thickness in a butt joint
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Fig. 11 Butt joint stiffness and maximum average axial stress variations
as a function of adhesive thickness

layer of 3mm, the influence of the hydrostatic stress is trivial,
and the adhesive behavior is determined mainly by the increas-
ing loading rate.

The variation of the loading rate in the adhesive layers can
be estimated. If E; and I, represent the Young’s modulus and
the length of the adherent, respectively, and E, and /. those of
the adhesive, the total elongation of the adhesive joint (Al) can
be calculated:

Al = Al + Al,
= €l + €l. (11)
so that the average deformation rate of the joint is given by:
Al €l el
b=—="2 4 = 12
! l l (12)

where €, and ¢, are the average strains in the adherents and the
adhesive respectively; €, and ¢, denote the average strain rates
in the adherents and the adhesive, respectively; & is the trans-
verse loading rate and / denotes the total joint length.

In the elastic case, the following relation between the strain
rate in the adherent and in the adhesive is available:

L= (13)

With Egs. (12) and (13) the strain rate can then be determined.

In the plastic case, the strain rate in the adherent is taken to
be zero since the stress variation in the adherent is almost negli-
gible, and the strain rate in the adhesive layer is calculated by
Eq. (12).

For a butt joint having a total joint length of 40mm and an
adhesive thickness of 0.5mm, the variation of the loading rate
in the adhesive can be three times greater than that initially.
When the adhesive is completely plastic, the loading rate is 80
times that of the average loading rate in the joint.

Experimental Comparison

The experimental comparison is performed on both single
lap and butt joints at constant cross-head speed loading. The
individual specimens are cut and machined from aluminium
alloy plates bonded with the adhesive. The cure condition used
for the bulk adhesive previously described is adopted. Before
bonding, the 2024 T6 aluminium adherents were surface treated
with a chromic acid etch to prepare the surfaces.

The tensile tests, using a cross head speed of 1mm/min, are
carried out for single lap joints. The average shear strain is
measured by an ALTHOF extensometer (Hu, 1991), and the
average shear stress is calculated by dividing the applied load
by the bonded surface area. The adhesive thickness here is

Journal of Applied Mechanics

—&— viscoplastic modeling

—_—

experiment

v T T T

0.0 0.1 0.2 03 0.4 0.5 0.6
shear strain

Fig. 12 Comparison between the model and experimental results of a
single-lap joint

0.5mm. The comparitive result is shown in Fig. 12. A good
agreement between the experimental results and the model is
obtained.

For butt joints, the mechanical tests are performed at a cross
head speed of 5 X 10 *mm/s. The displacement of the adhesive
layer is measured by a slip gage extensometer. The average
strain is calculated as being the ratio of the displacement of the
adhesive layer to its thickness; the displacement of the adhesive
layer is calculated by removing that owing to the adherents
from the value measured by the extensometer. The experimental
results are compared with the viscoplastic finite element analy-
sis (Fig. 13). A reasonable agreement is also obtained between
the model and the experiments. The small discrepancy undoubt-
edly comes from interfacial debonding that is unaccounted for
in the model, but observed in adhesive joints tested in tension
within a scanning electron microscope (Hu, 1991). For single-
lap joints, only very little localized debonding occured.

Conclusion

The general constitutive relation of an adhesive was studied
experimentally and theoretically to take into account the viscos-
ity and the influence of the hydrostatic stress. The calculated
results for adhesive joints using the obtained constitutive equa-
tion show that for a single-lap joint under a creep load, the
shear stress concentration is relaxed by creep. The relaxed shear
stress is compensated by an enhanced shear stress in the centeral
region of the joint. This stress level should always be kept under
than the creep limit to prevent creep failure of the joints. For a
butt joint subjected to a constant cross-head speed loading, the
hydrostatic stress and the loading rate in the adhesive layer
varies as a function of the adhesive thickness. The competition
between these two factors with varying adhesive thickness is
taken into account in the present analyzes. The results show
that for thinner joints, the stiffness is more important and the
maximum stress varies little (0.1mm to 0.5mm). By increasing
the joint thickness, the influence of the hydrostatic stress de-
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Fig. 13 Comparison between the model and experiment of a butt joint
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creases and the influence of the loading rate dominates the
behavior. This leads to an increase in the maximum stress in
the joint. Finally for very large joint thicknesses (approximately
equal to the cylinder diameter), the adhesive bulk material prop-
erties are exhibited. The experimental result shows a good
agreement with our analyzes for single-lap joints, and a reason-
able result is obtained for butt joints. The difference between
the model and the experiments for butt joints is probably due
to interfacial debonding which is not taken into account in
present model.
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Analysis of High-Speed Rolling
With Inertia and Rate Effects

Limit-analysis procedures for time-dependent materials are utilized for assessing
some essential technological parameters in high-speed strip rolling (i.e., the torque,
the separation force, the minimal friction required to avoid skidding, maximum allow-
able speed, etc.). The formulations are quite wide in scope (e.g. they include the
inertia of the plastic flow beside the material rate effect) but lack, in general, the

D. Iddan

Research Scientist.

J. Tirosh rigor of the true bound by reasons to be discussed. The solutions are, by default,
Professor, considered as *‘approximate bounds’' unless stated differently. Due emphasis is given

Henri Garin Chair, to the development of a lower bound, infrequently employed in metalworking analysis.
Mem. ASME It yields relevant information about the process which appears entirely consistent

with an independent upper bound solution. In particular, the rate effects are shown
{in both solutions ) to be characterized by the intensity of two dimensionless groups,
known universally as Bingham No. and Euler No. Normally they cannot be ignored
at high speeds currently attainable in modern industry, above, say, uy = 50 [m/s].
For slow speeds, the above solutions constitute rigorous upper and lower bounds.
The relative close proximity of the two bounds to experimental data (with copper,
aluminum, and steel) and their excellent agreement with the rigid-plastic finite ele-
ment solution, demonstrate the utility of having these dual bounds simultaneously.

A seemingly useful by-product from the analysis is the ability to predict the onset
of skidding at very high speeds. For this sake, an expression is offered for determining
the maximum allowable rolling speeds (at the incipient of skidding) in conjunction
with the requirement for a certain minimum interfacial friction.

Facuity of Mechanical Engineering,
Technion—Israel Institute of Technology,
Technion City, Haifa 32000

Israel

1 Introduction

The effect of high speeds on metalworking plasticity has been
surveyed and accentuated by Davies and Austin (1970). In
general, such investigations can be approached from two as-
pects. One aspect is the effect of speed on the material rate-
dependent yielding, resulted from the induced high strain rate.
This consideration was pioneered by Cristescu and his col-
leagues (see, for example, Cristescu (1975, 1979) and Durban
(1984)), employing a linear viscoplastic constitutive behavior,
The second view is to incorporate into the analysis the inertia
of the plastic flow in order to get a better estimation of the flow
resistance, as suggested by Tirosh and Kobayashi (1976) for
rate-independent materials. The present work presents an at-
tempt to apply these two aspects simultaneously on high-speed
strip rolling and to “‘weight’” their relative importance on the
design of high-speed rolling process. A numerical FEM formu-
lation of such a problem was given by Fontane and Gelin
(1991). Other numerical oriented formulations were offered by
Chandra (1989) for rate sensitive materials and by Lau et al.
(1989) for inertia flows.

A peculiar phenomenon of decreasing loads while increasing
rolling speeds was observed experimentally three decades ago
by Ford (1947) and atiracted attention since then., A partial
explanation to this puzzling effect was suggested by Tirosh et
al. (1985), based on the supposition that a plastic softening
occurs in a narrow self-heated layer beneath the rollers. The
analysis in the above paper was restricted to a rolling condition
with zero neutral angle, while generally, as resulted from the
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present study, the location of the neutral point appears to be a
speed-dependent variable. The present solutions will show that
by increasing the rolling speed, the neutral point is shifted to-
wards the exit. This makes the process more efficient in the
sense that less frictional shear resist the plastic flow beneath
the rollers. Consequently, the average pressure on the rollers is
gradually decreased, until a limit speed is reached above which
skidding is envisaged. The approximate upper bound solution
employed here utilizes the new kinematically admissible veloc-
ity field of Iddan et al. (1986), which differs from Avitzur’s
(1968). In parallel, an approximate lower bound solution is
suggested, an avenue not considered hitherto. The commonly
used ‘‘slab method’’ solutions, i.e., Hoffman and Sachs (1953)
and Bland and Ford (1948) can be considered as lower bound
solutions. However, they are quite restrictive in the sense that
cross sectional planes of the deforming domain are bound to
remain planes, and hence unable to account, for example, for
the shear stress distribution inside the body. The present solution
relaxes this restriction and thus provides, in principle, wider
view on phenomena associated with high-speed rolling. The
two bounds (which are rigorous under quasi-static condition)
appear relatively close one to the other, so that they may replace
more elaborate and costly alternatives. Comparisons with exper-
iments of Shida and Awazuhara (1973) and Al-Salehi, Fair-
bank, and Lancaster (1973) are given with some scatter. On
the other hand, the bounding analysis is compared to the finite
element solution of Li and Kobayashi ( 1975). The fine match
justifies the use of the derived formulations for predicting the
maximum allowable speeds in strip rolling,

2 Constitutive Equation

For limit analysis a?plicalions, the relationship between the
stress deviator, s; = si’ + si’ (which is composed of plastic
part, .53’ ), and viscous part sS;- ') and the associated strain rate,
¢;, should be based on an existence of a stress potential. It has
been shown to be so by Rice (1970) in certain materials which
are characterized by the ‘‘over-stress’’ equation (where the plas-
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tic flow is activated only when a certain threshold stress is
reached) like Perzina’s (1963 ) representation

k V7,
where
F>0 for vh>k
F=0 for V/h=k (1)
and J, = 35,85 (s; = o — 3630u), k and y are material con-
stants.

Nonlinear functions for £(...) in (1) may readily be used
but presently the linear form (designated as Bingham Material )
is mostly used for cold metal working ((Cristescu (1975, 1979)
and Tirosh and Sayir (1987)) and will be employed here too,
namely

1 k
g =—|1——|s; for VJ, =k, (2a)
y 2n [ \'Jz:| $ :
or inversely
k
8 = 2n + f.;', 2b
= (oo ) i

where I, = $&,¢,, and 7 represents the ‘‘viscosity’” of the solid
(which is n = (k/)). By manipulating with (2b), one can get
the Von-Mises’ rate-dependent yielding curve as

VI = k( 1+ 2”7‘/!—2) (2¢)
In many materials 7 is a (decreasing) function of (increasing)
effective strain-rate €, but it is taken as a constant in the pres-
ently considered range. At lines of velocity discontinuities
(where, due to the extreme high strain rates VI, = % and n—
0), we may consider their product in (2¢) to reach a finite
value. This delicate point, akin to the upper bound formulation,
deserves a special study. In the present rolling process we re-
strict ourselves to the large diameter of the roller (compared to
the thickness of the strip) so that the flow is ‘‘nearly smooth’’
and thus avoids the discontinuities. This is one of the reasons
why we designate the foregoing analysis as an approximate
bounding analysis (the second reason, associated with the accel-
eration, will be given later). Obviously, when the process ap-
proaches a quasi-static low speed, the analysis renders rigorous
bounds. This distinction will be kept throughout.

3 Dynamic Effects

Consider the rolling process shown in Fig. 1. The suggested
upper bound solution is based upon the kinematically admissible
velocity field of Iddan et al. (1986) portrayed in Fig. 2 and
reads

2 =2 1
ux = —
R+ %r — VR? — x?
Rz—f(ﬁn?f— Rz—f)
where R is the roll radius and
2
Q= w_Rhf(l ¥ R"") ) (4)
hy

28 / Vol. 63, MARCH 1996

Fig. 1 The geometry of the rolling process: (a) general view, (b} the
plastic zone in the upper bound analysis, (¢) the plastic zone in the lower
bound analysis. The admissible velocity fields used for the two bounds
are different.

The extended upper bound functional with due discussion on
its approximative character was given by Tirosh and Kobayashi
(1976). It reads

J = f spefdv + f m\[};[u,*]ds

3
+ f VhL[uF1ds + f puFu¥ (5)
r v

where m is the shear factor along the roll/material interface
area sy (namely, m = 7/k). p is the material density. [u¥] and

FLOW / VELOCITY MAP

\

=
it

TETTETT

Fig. 2 The smooth kinematically admissible velocity field described in
Eq. (3). A line of discontinuity in the velocity field appears only at the
entrance {(and not at the exit] which may be disregarded when the ratio
D/hy is =1.
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[u¥] designate the discontinuity in the tangential and normal
components across boundaries of velocity discontinuities.
([#i¥] is finite, [u;f] = 0). The upper dot denotes the material
derivative, whence the acceleration in (5) is

(6)

The energy-rate terms on the right-hand side of (5) are all
expressed in terms of u# and its derivatives. The result is in an
upper bound to J, (denote as J*). Since u* of (3) includes
the neutral angle «, as a free parameter, it will be determined
as the angle which minimizes J* according to

aJ* CRAd
da, 0’ Jal il

(7

The lengthy algebra for expressing J* and its derivative is
omitted here for brevity and given fully in Iddan's thesis
(1988). The end result of eliminating «, from (7) yields

m\* b m
aﬂ = — + e
2a a 2a

where a and b in (8a) are the following functions:

il 2 —
a:NE){4(,+&) b= [l tiie
hf ho R ho R

(8a)

s [i- ) o (222

+4(1+’i) M+(£’1)2M _
hy R hy R
N = (Bingham No.)™" and Eu = (Euler No.) in (8b) are the

basic nondimensional speed parameters of the process defined
in this situation as

Eu = psz— . (8¢)

The solution (8a) for «,, is valid only for non-negative b. For
negative b, one can show that @, = 0. Upon substituting a,,
back to the expression of J* and equating it to the applied work
rate (Mw), one gets the approximate upper bound solution for
the torque, M, as

M = kR*[G, + N:G, + Eu- G,]. (9)

The functions G,, G,, and G; of (9) are derived by Iddan

(1988). They are

G.:(ﬁ+az){ln@+l ho — Iy
R n i\ R

Journal of Applied Mechanics

2 —
G2=(l+£a,2,) 4(1+ﬁ) o = By
h R

4 ho
2 —
S e o
" 1 +—a? (1+—~a3)
hy hy

h(l ]

o [1-£ T3] -(4)]

When relating the interfacial shear stress to the average rolling
pressure as T = up, the approximate upper bound solution for
the separation force is

e Y
2 1+(h) (11)

(12)

M 1

e
ar
By letting the speed approach zero, the reduced expression
is a rigorous bound and reads

F= (a7 = the total contact angle).

(13)

kRG,

fi-22)
(258

where G, is defined in (10) and a, is defined in (8a).

M:{J’. i kRZG], Fn.b. e (14)

4 The Viscoplastic Lower Bound

The Admissible Stress Field. The lower bound solution is
now extended to include the speed effects via the inertia of the
plastic flow. The kinematics which goes with the admissible
velocity field in this solution does not have to (but may, if
convenient) be similar to the one used in the upper bound
solution, and therefore will be denoted differently as u!*’. Con-
sider a plane strain strip rolling where the arc of contact is
replaceable (with a small error) by a line, as in Fig. 1(c). In
contrast to the direct method of the upper bound any kinemati-
cally admissible velocity field will always yield a solution, the
lower bound approach (with rate effects) is an indirect method.
It means that a solution may or may not be reached by the trial
stress fields, o{. It depends whether the equation of motion
(rather than just the static equilibrium) can be satisfied, which
158

o} = puf® = 0 (15a)

where the acceleration field u{® is assumed to be derivable from
a kinematically admissible velocity field of «{. In addition,
the admissible stress field o must satisfy the yielding equation

IO = L5095 < J, (where VI, = kas in (2¢)) (15b)
and the stress boundary conditions

oPn; =T, on sy (15¢)

In cases where the stress field is composed from different zones,
interfaced by lines of velocity discontinuities, the following
**dynamic conditions’’ should be met across such lines (with
notations as in (5));

(0”1 =0, [o”] = puu®. (15d)
At the present analysis, a small angle approximation is used
(e.g., relatively low reductions are operated with relatively large

roller) such that the stress field is ‘‘nearly’’ continuous and so
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are the velocity fields. Thus, the ‘‘dynamic jumps’' are negligi-
ble. The inequality equation of the lower bound theorem (Tirosh
and Iddan, 1994 ) renders

f oM nuds = f T,u,ds + f o™ — ) udv. (16)
e iy v

The second term on the right-hand side of (16) is a variation
between acceleration fields. It is zero on the boundary, s, but
remains unknown elsewhere, in spite of the steady-state nature
of the process. The volume integral of this difference throughout
the domain of the flow can be assumed small for any smooth
admissible velocity field in V. A possible error of this nature
causes us to call the resulted bound as an ‘‘approximation’’
rather than a ‘“‘rigorous bound’’ which may only be reached in
the limit situation of u{” — 0.

For the steady-state strip rolling process, Eq. (15a) is hence
reduced to

ac'® 1979 o — g oul”
L - 4L = pul" ——  (17)
ar r o8 r
0) ) (0)
1008 0109 7 _, (18)
r o8 ar r

The stress boundary conditions for (17) and (18) depend on
the position of the neutral angle as defined in Fig. 1(c). They
are given separately at each zone due to their inverse shear
direction, namely

7@ = |myJ| along the wall:

‘~"for (R, <r=Ry), '+ for(Re<r=R,). (19)

Along the plane of symmetry; 759 = 0 for 6 = 0.
For the considered cases where the roller’s radius is relatively
large, say (h,/R) is O(107?), therefore,

cO(Ry) = 0, (Ro) =0, aP(Ry) = o(R) = 0. (20)

We now choose u{® to satisfy all the kinematical conditions of

the flow as u# does in the upper bound analysis of the same

problem (Tirosh et al., 1985). Namely
u =u® =0 in V

(21)

R
ul® = —yy R cos O ~ —uy —, (22)
r r
By inserting the above velocity field in (2¢), one gets the speed-
dependent yielding for this particular problem

Vi = k[l + m(%)z]

where for this case, the “*speed parameter’” N is defined as N
= n(uy/ Ryk) . For time-independent plasticity (n = 0), the Von-
Mises criterion JE"_’ = k is recovered.

The procedure to get the solution for (17) and (18) is to
assume a distribution of the shear stress components in such a
way that the stress boundary conditions (19) are satisfied, and
then, with this shear distribution, to integrate (17) and (18),
subjected to the boundary conditions of (20). The most simple
trial supposition is that the shear component vary linearly with
the angle, as

(23)

TE"’=t(E€)M£‘” (=) forzonel, (+)forzonell (24)
o

so that (19) is satisfied.
Substituting (24) in (18) and solving for the normalized
stress &y (&; = (o;/k)) renders

30 / Vol. 63, MARCH 1996

2
59 =g(r) + m y = g(r) + second-order term
23

(ma < 1) (25)

where g(r) is the unknown function to be determined.
Using (25) with (17) with due account of (20), (21), and
(22), one gets the stress distribution at each of the zones:

(g8 )]

the hoop stress in zone I:

o9 = —2—2(ﬁ— 1)ln&
2a

R ORI

and in zone II:

6P =-2— 2(% + 1) In—
SRR
m (8- (8)).

The shear stress (in the two zones with different signs) is

2
%“é’=im—9[l +2N(5)] (30)
o r
where
ug nuo  [2(ho — hy)
=p=2 d N=12 [ 1
Eu=p w0 an e 5 (31)

By letting the speed to approach zero, the rigorous statically
admissible field for the lower bound theorem is obtained. Thus
the static solution is

zone . &9 = —2(£— l)ln& R.=r=R
2o r

zonell: 6@=-2(2+1)ln— R=r=R, (32)
2a R,

zone I: as°>=—2—2(-”i— l)ln& R=r=R
2a r

zone II: as”:—z—z(%—l)lnRi Ry=r=R, (33)

f
a mé

zoneI: #% = - —
a

O=f=a R =r=R~R
zone IT: "r“,'};’=+Eq O=f=a R=rs=R,. (34)
(4
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Fig. 3(a) The friction hill in the rolling process. Comparison between
the “slab method" (Hoffman and Sachs, 1853) and the author's reduced
lower bound solution (namely for N = Eu = 0). Note that a higher lower
bound means that the solution is closer to reality.

NORMAL ROLL PRESSURE(TONS PER SG» M)

n-

" ———BLAND AND FORD
-~~~ OROWAN
—— AUTHORS

ot

st

0 & %2 05 o4 8 o8 o

ExIT RADIANS ENTRY

Flg. 3(b) The friction hill In the rolling process. Comparison between
the “slab method" (taken from Bland and Ford, 1848) and the authors
reduced lower bound solution (namely for N = Eu = 0). Data: copper,
reduction of 30 percent, friction coefficient of . = 0.088, h, = 2,54 mm.

The stress distribution of (33) is compared favorably in Fig.
3 with the *‘slab method’’ solution given by Sachs and Hoffman
(1953) and Bland and Ford (1948).
5 The Neutral Angle

The neutral point on the strip, beneath the roller, is defined
as a point of ‘‘no slip’” between the strip and the roller. It is
located at a distance R, at which the radial stress of zone I is
equal to the radial stress of zone II. Hence, by equating (26)
to (27), one gets an implicit equation for R,. It reads

(5] 3o(8)
4= (8- )
2[5 (8o oo

One can obtain from (35) the explicit solution to R, as

Journal of Applied Mechanics

& {12y +{afm))
Ry

Ry =Ry o Tal2m)
or
(hf (U2 +(alm))
)
hn = Ih{l e(mmm] » (36)
or equivalently (via geometrical relationships ),
h_{ 124+ (alm))
_ o h (h_u) h
= 25 |\ mmEn (37)
where
1 m h,\?
T= [—Eu - ‘ZN(——— 1)] Ii(—") - 1] . (38)
For slow speeds one gets
hf (12 +(afm))
h, = ho(h—) (3%9)
0
ho [ [ by \ (V2 (im) B )"
=12 —=| (= — :
* { D [ (h) o e

A comparison of the neutral angle obtained from the upper
bound analysis (Eq. (8)) to the neutral angle obtained form the
lower bound analysis (Eq. (37)) is given in Fig. 4 along with
three-dimensional analysis of Oh and Kobayashi (1975).

6 The Rolling Torque and Separation Force

The torque (per unit width) is calculated from the totality of
the interfacial shear produced by the normal stress distribution
(Eq. 28 and 29) and Coulomb friction coefficient according to

R, R,
M= et [—f oPdr + f arS,[”dr:I
2 R, R_{

"

(41)

(zones I and II are designated by superscripts)
which yields

D 112
MU’,B, ey D,
e hn([z(ha - hf)])

X ({A} +N{B} +Eu{C}) (42)

= BOUND SOLUTIONS

i

———~— SEMI=ANALYTIC (OH AND KOBAYASHI)

5

o
T

LOCATION OF NEUTRAL POINT, £,/L
8

Fig. 4 The location of the neutral point versus the shear factor for vari-
ous reductions. Comparison of the two reduced bound solutions (upper
and lower) with the 3D solution of Oh and Kobayashl (1975) with Initial
width/thickness ratio of 3.
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where {A}, (B}, and {C} in (42) are

AN h_)]
A hn]n(hﬁ)+2a[l T hom(hf (42a)
(1t my(h
2= (1= ) (e )G 1) 2]
2

BB t] o

hf ho hu 2&’ hl) kn
__1]lh h\' @_’h)}
c-= 4{%[”(&})] 2(|+hf B)}. e

The overall force (per unit width) is readily computed from
the same normal stress distribution as

-

172
F“-"ck[%(ho—hﬂ] ({E}+N{G)}+Eu{H}) (43b)

i Jb"’dr] (43a)

Rﬂ R
f o dr + JI
R, R

o

which yields

where the expressions {E}, {G}, and { H} are given as
h, hc)
E=1+ In | —
(hu = hf) (hf
I:ho+hf_2h"_hﬂ ln(h}:};f)]

m
+_
2(1’ ho"hf
_ [ (o=t m\(ho _
o=2{(=)| (1+5)(-1) 2
ho\ [ he = By
+(hr)(ho”hf)
my\(,_k by
X[(|+2a)(l h,,)+2hn]} (44b)

)
AW hy

The friction coefficient, y, for the torque calculation, is re-
lated to the friction factor m through their force equivalence
relation, as follows:

(44a)

(44¢)

f:" T(@)dr = ppa(Ro — Ry) = pFo  (45)
'
where from (30)
Trola) = mk[l + ZN(%)z] ;
The interrelation between p and m is hence
(46a)

()

For nonviscous material it reduces to the regular relation

(46b)

The rolling torque (41) and the separation force (43) varia-
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Fig. 5 The average roll pressure as a function of the rolling speed (ex-
pressed by the Euler No.). Note the decrease of the roll pressure while
increasing the rolling speed in the upper bound solution. This tendency
is terminated at the speed at which the neutral angle reaches the rolling
exit. From this speed and further on {shown in dashed line) skidding is
envisaged. FEM solution of Fontane and Gelin (1991) has an essential
resemblance.

tion with respect to the rolling speed are shown in Figs. 5, 6,
7, and 8.

7 Minimum Required Friction and Maximum Al-
lowable Speed
Lower Bound Solution. It is noticed that to ensure o, =

0, a minimum allowable shear factor, #,,, should be prescribed
or else skidding will ensue. For the lower bound solution,

_T
21In (ﬂg)

hy
since, for slow processes, T (defined in (38)) approaches zero.

The condition (47) is equivalent to requiring that the Cou-
lomb friction coefficient should be at least

m=2a|1+ Myiy = 20, (47)

n = Mmin _ 2o

(. (.

since, at @, = 0, (p/k)win = 2. The result of (48) agrees qualita-
tively with observations given by Hoffman and Sachs (1953).

,u-ml'n = (48.}

5L ﬂlo
D/hg® 40

8 al- r% =40 P
r“E' m =025 (u=09) ’// UBRER
3 -
s 3 ,’
Z - LOWER
W
y /
=
B 2
-
-l
=]
&

I_

+ L L
0 5 I

"EULER No, (pUZ/K)

Fig. 6 Bound solutions to the roll torque versus speed. The speed at
which skidding is anticipated is shown with dashed line.
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At a given speed, the friction prevails at o, = 0 sets the
minimum required friction coefficient for safe rolling (i.e., with-
out skidding). Let a, in (37) be zero and solve for m. This
leads to the minimum friction

0 _ [ho—Hy
min R

+ (RO, By
kR ho hy

Now, the maximum allowable rolling speed (which maintains
the minimum friction of (49)), is solved from (49) and reads

BN’ © b
{lln]mt: s =y = 0
“ (2@) z' 2a (58
where
__ P
Y
520 (Vg N i";~1)
R\ \#, he) \2a
2
5=2ﬁ—|)ln(@) (ﬁ)—l (51)
2a hy hy
and finally

= us?raux ( ) (52}
hy
Speeds beyond that may lead to skidding. For example, for
nonviscous material, Egs. (50)-(52) yield the maximum allow-
able speed as

m= .25 ,pus09
D/hg = 40
4t % = 40
NO INTERTIA (Ey =0)

€3t
"y UPPER ———
. \5—.—--—-
& oF
4} LOWER
£
e
e Ir
[+ 4
1 1 -~
005 .00 o5

(BINGHAM No.\™, U /(KR)

Fig. 7 Bound solutions of the roll pressure for time-dependent material
{without inertia), using the Bingham number as the dependent variable.
Note the similarity to Fig. 5 where the inertia term (the Euler No.) is used
as the dependent variable. The roll pressure is seen to decrease while
the rolling speed is progressively increased. It is terminated at the speed
at which the neutral point reaches the exit. From this speed on (shown
in the dashed line) skidding is envisaged.
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Fig. 8 Bound solutions to the roll torque versus speed, as in Fig. 6, but

with Bingham number as the dependent variable rather than the Euler
No. The speeds at which skidding is anticipated is shown with a dashed

line.
» (}_10) 12
hy
T T (53)

=2 (2
i

Upper Bound Solution. One can estimate the minimum
required friction and the maximum allowable speed also from
the upper bound solution. Let the expression for ¥ (u;, m, R,
ho, k) in Eq. (8) be equal to zero to set the limiting condition
for nonskidding operation, and solve for m

hf hu 1 hu_hf 3‘0[«(} k_‘r %
B2 ST [P VR0 . ek .. 4 S .
2R{"(h,) 2V Rk "o
mmln: 2
_f nuf E{ _2ﬁ
R ho ho
ﬂﬁ 4 l+h‘r _h_'r h_lr 2 hn—h[
kR hy hy R
b, ﬂ“f (k!)z A8
pelL) a2
Jf Jh hn hg

By letting the process be slow (u#, — 0), the minimum shear
factor becomes

(54)

(55)

This reduced result is identical to Avitzur’s solution for quasi-
static rolling (1968, Eq. 15.37a) derived from an entirely differ-
ent velocity field.

The maximum allowable speed is derived from (54) and

reads
" b\ e b
o = 4\ 5= ) T2~ 52
24 a 2a
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Fig. 9 The minimum allowable friction factor, m, versus the maximum
allowable exit speed. It|s seen that in order to reach higher rolling speeds

one should increase the interfacial shear. This interrelation is not pro-
nounced in the lower bound solution.

where
3ph,

2 (-]
{2 B (05)

N/h? /
1 [ho—
(hf)u By o

For example, for a nonviscous material, Eqs. (56), (57) yield
the maximum allowable speed as

a=

“)’ max

R @ 1 [ho=hy
\/h:‘g J kf)+4\/ R ]
2 .
]_
m

)]

A typical presentation of the interrelation between my,, and
Urmax 18 given in Fig. 9. It explains why higher rolling speeds
necessitates higher friction factor with the workpiece.

(38)

8 Comparison to Experiments and Finite Element
Solution
The hardening behaviour of the tested materials has the fol-

lowing form
A%
g = cru(l + 3)

where b, n, and o, are material constants.

As mentioned earlier, to conform with the limit analysis theo-
rems one should use a uniform flow stress in V. This was
introduced by the following averaging

(59)
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l ob ?_f n+l B
f {n+l)zf|:(]+b) 1] &8
2 W 2 h
= (5 GUGU) and Zf = —E In (h:) .

At any specific reduction, the equivalent strain €, and subse-
quently the associated hardening flow stress, &, were evaluated
beforehand, and merged into the final expressions of M and F,
as k = {Ehﬁ ¥i

The bounding solutions (Egs. (8), (12), (42), and (43)) are
compared to experiments with copper and aluminum from Al-
Salehi et al. (1973) and with steel from Shida et al. (1973).
Corresponding rigid-plastic finite element solutions by Li and
Kobayashi (1982) are attached to these Figs. from 10 to 15.
The agreement is not too satisfactory in regard to experiments
(to be discussed) but very satisfactory with respect to FEM
solutions.

where

(61)

9 Results and Discussion

The solutions given here were formulated for viscoplastic
solids undergoing high-speed rolling with some generaliza-
tions and approximations as mentioned in the text. The nature
of the solutions does not allow for fine details as residual
elasticity (Chandra, 1989), temperature-dependent friction
(Lenard, 1989), and the like. Therefore, special occurences
of, for instance, multi normal-pressure peak points (Jesweit,
1989), delamination split (*‘Alligatoring™”) of the workpiece
(Sherby et al., 1982) etc., cannot be detected. The suggested
solutions provide just a general information of what may be
changed (if at all) in the design of the process if an increase

———FEM (LI & KOBAYASHI)

Téo
-E.-[“ o MEASURED (AL-SALEWI ET. AL)
BOUND SOLUTIONS

ROLL TORQUE/ UMT WIDTH, M [X43]

1
. 8 b * * * k =
REDUCTION,r%
Fig. 10 The roll torque versus reduction, Comparison between FEM
solution of Li and Kobayashi (1982) and the bound solutions, along with

experiments on copper taken from Al-Salehi, Fairbank, and Lancaster
(1973). Data: o, = 70.3 (N/mm?).
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(4] 1 A 1 1 ol L o
o 5 0 L] 20 -] 0 B
REDUCTION, %

Fig.11 The roll force versus reduction. Data and references as in Fig. 10.
It is seen that at some portion of the curves the lower bound surpasses
somewhat the numerical solution (rather than to stay always beneath
it). Itis belleved to be attributed to the differance in the way the frictional
shear is used. In the numerical solution the frictional shear is considered
independent of the normal stress, whereas in the lower bound analysis
{when N = Eu = 0) it does depend on the normal stress by a Coulomb-
type relationship.

of the rolling speed is anticipated. The solutions are, how-
ever, reduced to rigorous bounds (on which practical designs
are usually based) by letting the operational speed to ap-
proach zero.

It turns out that the suggested approximate solutions appear
relatively close to each other and embrace consistently the
counterpart numerical rigid-plastic solution of Li and Kobay-

[ -

——=—=FEM (U B KDBAYASHI)

~
1

'S
I

ROLL TORQUE/UNIT WIDTH,M %]
—

D;m-qn
30 35
REDUCTION, %

o
1
S
@
8
B

Fig. 12 The roll torque versus reduction. References as In Fig. 10. Data:
o, = 50.3 (N/mm?).
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8
1

g

Fig. 13 The roll force versus reduction. References and Data as in Fig.
12,

ashi (1982). The comparisons were done in regard to the
position of the neutral angle, (namely, the distance [, shown
in Fig. 3a), the torque (Figs. 10, 12, 14) and the separation
force (Figs. 11, 13, 15). The good match of the FEM solution
to the presented bounds is exhibited. Experimental data from
Al-Salehi et al. (1973) and from Shida et al. (1973) are
added to these figures and appear scattered up and down the
bounds. This can possibly be attributed to the variation in
the friction conditions during the experiments, unaccounted
by the analysis, and/or the inadequacy of the Bingham mate-

L]
J‘ ——=— FEM (L) & KDBAYASHI) o

© MEASURED (SHIDA ET. AL)
— BOUND SOLUTIONS

~
I

?

F Y
Ll

ROLL ToRaue unr/ wiomi, m [Ke]
#

REDUCTION,r %

Fig. 14 The roll torque versus reduction, Comparison between FEM
solution of Li and Kobayashi (1982) and the bound solutions, along with
experiments on steel given by Shida and Awazuhara (1973). Data: o, =

334(N/mm?).
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Fig. 15 The roll force versus reduction. References and Data as in Fig.
14. As in Fig. 11 it is seen that at some portion of the curves the lower
bound surpasses the FEM solution (rather than to stay beneath it). it is
believed to be attributed to the difference in the way the frictional shear
is used. In the numerical solution the frictional shear is considered to be
independent of the normal stress, whereas in the lower bound analysis
(N = Eu = 0) it does depend on the normal stress by a Coulomb-type
relationship.

rial model to describe the behaviour of the tested materials,
The general trend of the scattered data, however, is still an
indicative measure of the validity of the suggested solutions.
The speed effect on the separation force and torque ap-
pears in Figs. 5, 6, 7, and 8. In these figures the bound
solutions are extended beyond their quasi-static range in
order to estimate the role plays by the inertia and the mate-
rial “‘viscosity.”’” The upper bound solution indicates that
the average roll pressure, though not the torque, is reduced
with the increase of speed. This kind of observation by
Ford (1947) received recently a support from a numerical
solution by Fontane and Gelin (1991) who incorporated
both inertia and material rate sensitivity into their FEM
formulation. The present explanation is that this phenome-
non can be attributed to the shift of the neutral point towards
the exit, while the rolling speed is progressively increased.
It relaxes the need to postulate a soft self-heated layer which
was as an alternative explanation by the authors (1985).
It is noted that the ‘‘maximum allowable speed’’ phenom-
enon, anticipated in this work, emerged from the same phys-
ical ground as that commonly observed ‘‘minimum allow-
able shear’’ demand as shown in Fig. 9. They impose the
same restriction on the performance of high-speed rolling.
For example, when considering a strip of steel (p = 7850
[kg/m?], k = 10® [N/m?]), undergoing 40 percent reduc-
tion by rollers of dimensions (D/hy) = 40 and shear factor
of m = .25, the maximum allowable speed is computed
(from Eq. 56) to be approximately 60 [m/s]. The maximum
speed can go up if the shear factor, m, and/or (D/h,) will
be increased. When the same material is viscoplastic with,
say, n = 10? [(N/m?) sec] and inertia is ignored, the maxi-
mum speed for smooth rolling is then approximately 70 [ m/
s]. Again, with higher shear factors and/or larger roll-

36 / Vol. 63, MARCH 1996

diameter, higher limiting speeds can be obtained. A closer
experimental study of this complex behavior related to skid-
ding at high speeds is certainly due. Within the framework
of the present finding, it seems that the current industrial
rolling speeds (which are of the order of 10* [m/s]) are
probably on the verge of their maximum utilization.
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Introduction

The birth of pulsed laser technology in the 1960s extended
the usefulness of the laser in materials processing applications.
Pulsed lasers are now commonly used in such diverse applica-
tions as drilling, scribing, trimming of electric resistors, weld-
ing, hardening, quenching, cutting, and surface texturing of
metal forming tools (see Nonhof (1988) for an overview of
materials processing applications with Nd:YAG lasers, and
Steen (1991) for an overview of materials processing applica-
tions with CO, lasers).

Laser irradiation of a surface produces a heating effect due
to the absorption of light energy. Deposition of the laser energy
can be either continuous, where there is no interruption of the
beam, or pulsed, where beam output from the resonator is inter-
rupted either electronically or mechanically. In a pulsed beam,
a significant amount of energy is delivered to a material surface
in short time intervals thereby leading to elevated thermal stress
levels as the thermal load is absorbed into the substrate. The
thermal stress field that results from pulsed laser irradiation is
primarily controlled by the temporal pulse profile or distribution
of pulse energy in time. An individual pulse typically rises to
its peak power in a small interval known as the rise time. After
peak power is attained, the pulse decays to minimum energy
over a time interval which typically exceeds the rise time and the
temporal distribution of energy in the pulse is thus negatively
skewed. In other laser resonators, the temporal pulse profile has
a near-zero skewness and thus the pulse rise time and decay
time are nearly equivalent. The shape of the temporal profile is
due to the mechanism that produces the pulses (i.e., electronic,
mechanical, acousto-optic, etc.).

The amount of heat delivered in a single laser pulse and the
manner in which it is distributed in time governs the thermal
stress field in the irradiated material, The thermal stresses can
lead to surface and subsurface cracking of a material and hence
degrade its performance in a future application. The thermal
stress field in a laser-irradiated material is also important in
materials processing applications where the goal is to alter the
microstructure of the material near its surface (such as in laser
hardening ). The ability to predict the thermal stress field in a
material can also help one to adjust critical process parameters
such as pulse repetition rate, pulse train period, peak power per
pulse, and depth of focus.
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models the output from a cylindrical laser resonator and thus defines a radially
symmetric intensity distribution about the beam axis. The functional form of the
temporal pulse profile is quite general in that it models the temporal pulse shapes
emitted by a laser that is either internally pulsed through radio frequency modulation
of its power supply, Q-switched, or mode locked. It also models a continuous beam
that is mechanically chopped through external means.

Theoretical and experimental investigations of laser heating
of materials and the resulting thermal stress fields began to
appear not long after the laser became a significant materials
processing tool in the 1960s. For example, Oswald et al. (1971)
conducted an experimental investigation of the thermoelastic
response of materials such as Al, Ag, Cu, Si, and Ge irradiated
with a pulsed laser. Popov et al. (1983) developed an experi-
mental technique to investigate thermally-induced plastic slip
with an energy beam. Geller et al. (1986) modeled the thermal
stress field in a steel plate quenched with either a laser or an
electron beam. Welsh et al. (1988) explored thermal stresses
and strains in both an elastic half-space and thin films under
steady-state heating with a Gaussian source from a laser. Ger-
manovich et al. (1988 ) derived the thermoelastic response of a
half-space subjected to volumetric heating by a concentrated
heat flux for various values of absorption coefficient. Volchenok
and Rudin (1989) derived the thermal stress field in a multilayer
plate due to the action of a continuous Gaussian surface source.

In this paper we derive the thermal stress field in an elastic
half-space due to a single laser pulse, the heat from which is
absorbed in the surface plane of the material. The distribution
of pulse energy during pulse activation is described by a func-
tion that models the temporal pulse profiles from common mate-
rials processing lasers, such as a Q-switched Nd:YAG laser or
pulsed CO, laser. The spatial distribution of heat energy on the
material surface is a superposition of the two lowest order
modes from a cylindrical laser resonator; these modes result
from solution of the standing wave equation for the resonator.
The mixed structure is more general since it is a mixture of
both the Gaussian mode, where the maximum energy is at the
center of the pulse, and the doughnut mode, where the energy
is minimum at the pulse center and concentrated in a ring around
the pulse center. The problem is thus axisymmetric with respect
to the z-axis.

Thermal field

Heat from a laser pulse with temporal profile, ¥ (¢), and
radial intensity distribution, Q(r), is absorbed in the surface
plane of an elastic half-space (r, 4, z) with the z-axis directed
into the half-space. The resulting thermal field, T = T(r, z, 1),
is derived from the following temperature problem:

9*T 1aT 8*T 14T
B A B i B B RO e >0,z>0,t>0 (I
arr  rdr 9z* a ot e ¢ &)
T=0 at t=0,Yrz (2)
T _ _ Y(na(r) 2=0,t>0 (3)

0z K
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In Eq. (1), « stands for the thermal diffusivity and in Eq. (3)
K represents the thermal conductivity. Note that the assumption
of a surface source given by Eq. (3) is appropriate for laser
heating of metals where beam absorption occurs to depths of
the order of 10 nm to 100 nm (Englisch, 1977).

The solution to Egs. (1)-(5) may be written as

r=0,1>0 (4)

¥,z *co,

T(r,z,1) = %f . fo Y(r)Q(r)

Xg(r,z,t —7|r', 0,0)dr'dr (6a)
where
glr,z,t—=71|r',0,0)
= % J:;o w BJ.(Br)J.(Br")
X exp{—a(B8® + n*)(t = 7))} cos (nz)dndf (6b)
and Y (1) is a dimensionless function of time.

Thermal Stress Problem

The thermoelastic stress field, oy;, is the sum of particular
stresses, o/, and homogeneous stresses o}

(7

The particular solution results from the thermal field in the
material but does not satisfy all of the boundary conditions. The
homogeneous solution (designated with the superscript k) is

i h
0',3;—'0'5;""0'.}.

Nomenclature

superposed onto the particular solution so as to cause the solu-
tion to satisfy the following boundary conditions:
o.(r,0,t)=0;, o.(r,0,1t)=0. (8)
Stress Field Corresponding to Particular Solution. The
particular solution is derived using the method of the displace-
ment potential (Nowacki, 1986). The stress field o, is derived
from the displacement potential, ¢, using the following rela-
tions:

18 62 2 2
s afi L e af S L)

19 o* :
a,{;z = _2# -—+ — |y a-f_'z = 2}1 d W (9a_d}
droz

where 4 = E/2(1 + v). Here, u is the shear modulus, E is
Young’s modulus, and v is Poisson’s ratio. The displacement
potential is related to the thermal field through

Vi = mT

(1+u)
m = K
1—-v

and « is the coefficient of linear thermal expansion. Inserting
Egs. (6) into Eq. (10a) and taking the Laplace transform of
the resulting expression, with the Laplace transforms denoted
by an overbar, gives

(10a)

where

(10b)

a = dimensionless shape pa-

z = normal position vari-

@(r, z, p) = Laplace transform of

rameter affecting nega- able displacement potential
tive skewness of tempo- C(t; B) = function defined by ®(r, z, t) = Love function
ral profile Eq. (31) ;
b = dimensionless shape pa- D(t; B) = function defined by Dimensionless quant]uea?
rameter affecting pulse Eq. (33) r* = dimensionless radial

activation time

¢ = dimensionless shape pa-
rameter affecting posi-
tive skewness of tempo-

E = Young’s modulus
G(z, t — T|8) = function defined by
Eq. (18b)
K = thermal conductivity

spatial variable
t* = dimensionless time
t¥ = dimensionless pulse
rise time

ral profile K, = parameter related to z* = dimensionless normal
d = characteristic beam ra- characteristic beam ra- position variable
dius dius G*(z*, 1*
f = fraction of mode struc- Q(r) = radial intensity distri- — 7*|B*) = dimensionless
ture containing the bution function defined by

Gaussian source

T(r, z, t) = temperature field

Eq. (18b)

g(r,z,t Y(¢) = temporal pulse profile  T*(p*, z*, t*) = dimensionless
— 7|r', 0, 0) = function defined by Eg. (dimensionless) temperature field
(6b) «a = thermal diffusivity Y (7*) = temporal profile in

h(B; ) = function defined by Eq.
(23b)

B = integration variable
n = integration variable

terms of dimensionless
temporal integration

m = material parameter de- = coefficient of thermal variable

fined by Eq. (10b) expansion o} (r*, z*, t*) = dimensionless stress
p = Laplace transform vari- A = parameter defined by field

able Eq. (23a) 7* = dimensionless

g, = maximum incident flux
for Gaussian source
r = radial spatial variable
t = time
t, = pulse rise time

w = shear modulus

ay(r, z, 1) = stress field

temporal integration

v = Poisson’s ratio variable
¢ ) Y(r*, z*, 1*
T = temporal integration — 7% |f) = function defined by
variable Eq. (36b)

@(r, z, t) = displacement potential
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Fig. 1 (a) Mixed source (f < 1); (b) Gausslan source (f = 1)

ve-22] .
* BJ.(Br)J,(Br') cos (nz)
% {J;:n =0 pHa(B®+n?)

By inspection, Eq. (11) has the following particular integral:
. r'¥(p)or’)

o[ [ Lstrrsor st
p=0dy=0 (B + ) [p + (B +7?)]

r'¥(p)Q(r')

dndﬁ}dr'. (11)

o0

o= _ 2ma
7K Jrw

dndﬁ}dr'. (12)

Equation (12) may be more conveniently written as

e

r'¥(p)Q(r’)

s =0
= cos (nz)
(Br! —
= £=0 Alo(Br)I.(Br') J::o P(ﬂz * 7?2)

T st |ap| ar

) L"P(f + B+ nz)

(13)

Evaluation of the integrals over the integration variable n gives

p=-22[" [ rowssieniner XL
r'=0 ¥ =0 p
2
oo
-z £
€
% | E— — dBdr' (14)

B p + af?
a

In order to lend generality to the problem, the following
function is chosen to represent the heat absorbed in the surface
plane due to a pulse with mixed mode structure:

Q(r) = qlf + (1 = f)Kr*le *, (15)

Equation (15) models axial intensity distributions due to many
high-power lasers that emit pulses having intensity distributions
comprised of complex mixtures of modes. The fraction of the
mode structure that contains the Gaussian mode is given by f,
where

TEM,,, = Gaussian mode
TEM,,. = doughnut mode (16)
O0=f=1

and the designation TEM, which stands for transverse electro-
magnetic, describes the behavior of the laser resonator at its
boundaries (Koechner, 1988). Figure 1(a) depicts the pulse

TEM,,

S = TEM, + TEML

40 / Vol. 63, MARCH 1996

mode structure for f < 1. Figure 1(b) shows the Gaussian
mode which corresponds to f = 1. The doughnut mode struc-
ture, which is the extreme case of Fig. 1(a), corresponds to f
= (. The parameter ¢, corresponds to the maximum incident
flux for a Gaussian source and contains information about perti-
nent surface physics, e.g., reflectivity, morphology, etc. The
parameter K. is related to the characteristic beam radius 4
through K, = d~2. The beam radius d represents the circular
boundary within the Gaussian source that contains 63 percent
of the total pulse power incident to the surface. Equation (15)
results from the Laguerre-Gaussian distribution function which
is a solution of the equation for standing waves in the laser
resonator (see Koechner, 1988).

Note that the doughnut mode structure is useful for selected
heat treating, cutting, and welding applications while the
Gaussian mode structure is employed in the vast majority of
laser cutting applications (Powell, 1993).

Using Eq. (15), we may write the following integral:

_r r'Q(r')Jo(Br')dr'

€

2
= 2K, [“ ¥ _f}(l ) fx)]e_wz”""- (a7

Performing the Laplace transform inversion on Eq. (14) and
using Eq. (17) gives the desired form of the displacement poten-

tial:
0
= - ;’%‘f’—; J;:o [f+ (1 —f)( - %)]e-m”“‘%{ﬁr)
X fo Y('r){e""‘ - %G{z. = Tlﬁ)}drdﬂ (18a)
where

Gz, t—7|B) = [e"‘ erf {ﬁ\‘a(r -7)+ T.:.;Z__ﬂ_,}
—p

4a( )
+ e P erf {BV‘Q(I -7T)— m}
e
— 2 sinh (ﬁz)] (18b)

and erf (x) is the error function. The stress field corresponding
to the particular solution, derived with Eqs. (9) and (18a), is
therefore

e [ G _ -a| BN
oﬂ—kL‘Dh(ﬁ,f)J;oY('r)[{z e"} .

_ 1 9°G
+ [ﬁze Az E?}Jo(ﬁr):ld‘rdﬁ (19)

B - % ' -fr _ g_

ahe hfﬂzuh(ﬁ,f).l;u Y('r}He 2}
x {—ﬂ LI ﬁw,,(ﬂr)}
-

_ 19%G
i {‘628 - 292

}J’o(ﬁr) ] drdf (20)
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g hj“ e [ v
A=0 =0

X {g - e"ﬁ‘}ﬁz.fa(ﬂr)dfdﬂ (21)

oi’ﬁ—hr h(ﬁ:f).r ¥Y(r)
A=0 =0

x {ﬁe“" £l aﬁ}ﬁ;.(ﬁr)drdﬁ (22)
2 0z
where

N muog,

2
K.K (232)

and

s ) ]e'wz"“‘r’. (23b)
4K.

(B f) = [f+(l -—f)(l _

Note that Eqgs. (19)—(22) satisfy only one of the boundary
conditions since

G

el e —28 (24)
and hence
al| o = 0. (25)
However,
oh o # 0 (26)
since
Gleo = 2 exf (Bla(t — ) }. (27)

In order to remove the unwanted traction, we must superpose
an isothermal solution onto Egs. (19)—(22).

Stress Field Corresponding to Isothermal Solution. The
stress field corresponding to the isothermal solution o is de-
rived from the Love function ® = ®(r, z, t) (Nowacki, 1986)
using

2
W _ 219 Vvih.‘?._z ®:
1 —2v 0z ar

rr

4 2u @ , 14
= = o - - = | &

T 1 -2voz v r or

! 2#‘ ._'.3_ (2‘—V)V2""'(f’ @.

Tl =2z azt|

5 2u 8 , 0
= (1 - - — |®. 28
=T o 3 ( )V Py (28)

The Love function, which satisfies the axisymmetric biharmonic
equation, is written in terms of the two unknown functions C(t;
B) and D(t; B) as

¢ = r [C(t; B) + zBD(t: B)le *J,(Br)dB. (29)
B=0
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The shear stress o”, is

ok e [C(t: B) + (Bz — 20)D(1; B)]
1 - 2p A=0
X Bre "1 (Br)dp.

Application of the zero shear stress boundary condition Eq.
(8b) gives

(30)

C(t; B) = 2vD(t; B)

The normal stress o’ is

(31)

e

b 2p

o’ =
= 1 = 2v fA=0

D(1; B)(1 + Bz)B e 1, (Br)dB (32)

Application of the remaining boundary condition Eq. (8a) to
the sum of Egs. (21) and (32) gives

mag,(l — 2v)

D(t; B) = [ 2PKK

]h(ﬁ:,f)

X Y(r)erfc {Aa(t — 1) }dT (33)
1]

=

The remaining components of the isothermal solution are

W 2p _
Ty = 1-= 2]‘)’ J:;(l [(1 ﬁz}ﬁ-]n(ﬁr)

y— ﬁz)i‘(rﬂ]ﬁze-&nu; BYdB (34)

R r [2uﬁ1,,(ﬁr)
1 —2vds=0

+(1 =20 - B2) ﬂ{@]ﬁze--ﬁzo(:; B)dp. (35)

Dimensionless Formulation. It is convenient to recast the
problem in terms of the following dimensionless variables:
rt = rK; 2% = Z\/E; t* = 4ak.t;
™ = daK.7; p* = BIK.

() o ()

Y mpygq, Go

The temperature solution Egs. (6) may be written as
T* = ] Y (%) (r*, 2%, t* — 7*|f)dr* (36a)
Vi Jreo

where

JiEY 2% 18 = asFyw [f+ (1 =1)

1 r¥?
X<l = 1 —
1+ t% —q* Lik p¥ =¥
r¥2 2 %2
exp4 — +
p{ (l+t*—7* * — 7

X

36b
Vi* — T[] + 1% = 7%] g
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The dimensionless thermal stress components are

#* =
T =

« BB

H*2
= + {,6 e

j; e [ Y(r*)[{% - e-ﬂ'*’}

1 9°G*

2 gz*?

— e

}J.,(ﬂ*r*}

+ {(1 — B*z*)p*J,(B*r*)

— (1 = 2v — B*z*)

X f*e~#"" erfc {

Jl(ﬁ*r*)}

dr*dpg* (37)

=]

ok = r h(B*; f)
pr=0

r*=0

Y('r*)[{e"‘"" - %}

*J,(ﬁ %)

e
{ gt _
f

- B2, (B*r*)}

1 3*G*

e *z}f(ﬁ )

2uB* I, (B*r*) + (1 — 2w —

Bre%) Ji(B* r*)}

ﬁ*“lllt* — ¥

X e #"*" erfc { 5

}]d'r*dﬁ* (38)

o} = r B**h(B*; f)1u(B*r*) Y(r*)
f*=0

=

G* e L] LrLd
X[T_S_ﬁz +8_'ﬂz(l +ﬁ*z*)

X erfc dr*dp* (39)

[}

oo i

B¥*r(B*; f)11(B*r*)

=0

X [ﬁ* gt

Y{r*)

T*=0

19G*
2 az*

Aok — etk
xeﬁc{ﬁ___‘fff

2

— Bxigkgfre

}]dr*dﬁ* (40)

where erfc (x) stands for the complementary error function and
G* and its derivatives are listed in the Appendix.

Temporal Pulse Profile.
is

The temporal profile of the pulse

1\
Y(r*) = (—) exp{ —b(r** — 1)} (41)
tk

where a, b, and ¢ are temporal shape factors that control the
extent of negative skewness of the pulse energy in time, pulse
activation time, and positive skewness of the pulse energy in
time, respectively. These parameters must be chosen so as to

42 / Vol, 63, MARCH 1996
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Fig. 2 Model of temporal pulse profile

ensure that the pulse activation time is significantly longer than
the rate at which heat propagates through the material. Note
that temporal pulse profiles similar to that in Eq. (41) have
been proposed by Hetnarski and DeBolt (1991).

Equation (41) models temporal profiles from a laser that is
either pulsed through radio frequency modulation of its power
supply (Gardner, 1992), Q-switched, or mode-locked. It also
models output from a laser that emits a continuous beam that
is mechanically chopped outside of its resonator (Hector and
Sheu, 1993). An oscilloscope trace of the temporal profile of
a Q-switched Nd:YAG laser using a 6.3-mm diameter crystal
may be found in Kim and Hector (1991). A similar trace from
a mode locked Nd:YAG laser using a 4-mm diameter crystal
may be found in Hector et al. (1992).

The dimensionless pulse rise time,
for the pulse to reach peak power, is

_(a\”
be)
Results and Discussion

The model temporal profile shown in Fig. 2 was used to
generate the thermal stress field in an elastic half-space. Values
of a, b, and ¢ were chosen to be 0.4, 7, and 3, respectively,
since they give a negatively skewed profile that resembles the
temporal output from many pulsed lasers. The dimensionless
rise time is calculated from Eq. (42) to be r* = 0.27 and the
pulse decays to minimum energy by #* = 1. Equations (37) -
(40) were evaluated with standard numerical integration rou-
tines.

The steady-state thermoelastic response of the half-space due
to continuous surface sources is examined first since it will
provide a basis against which the more complicated effects due
to transient heating may be compared. Figures 3 depict the

t¥, or the time required

(42)

¥

doughnut source

0.0 1.0 2.0 30 4.0 50
"

®)

Fig. 3 Steady-state variation of radial stress with radial distance from
axls at selected depths and time for (a) f = 1;(b) f =0
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steady state radial stress variation with radial distance from the
axis and at selected depths, due to Gaussian and doughnut sur-
face sources, for ¥ (¢*) = 1. Figure 3(a) shows that the surface
of the material experiences the largest compressive radial stress
since surface elements beneath the beam expand against
“‘cooler” surface elements outside of the edge of the beam.
Note that the spatial distribution of the radial stress field resem-
bles the radial distribution of the source, as expected. Figure
3(a) is in qualitative agreement with the results of Welsh et al.
(1988). Similar observations are appropriate for the radial stress
due to the doughnut source (as shown in Fig. 3(b)).

Considered next is the surface stress distribution both in time
and with radial position due to heat from a pulse with temporal
profile given by Eq. (41) with the specified temporal shape
factors. Figures 4 show the evolution of surface stresses o}
and &} at selected radial positions relative to the center of the
pulse. Figures 4(a) and 4 (b) compare the radial surface stresses
due to the Gaussian source (f = 1) and doughnut source (f
= (), respectively. As is the case with steady state heating,
compressive radial stresses develop on the surface in response
to the manner in which energy is deposited to the surface. The
radial stress becomes increasingly compressive during the time
when the pulse is activated. Shortly after the pulse reaches
maximum energy, 4 maximum compressive stress occurs in the
surface beneath the center of the beam followed by a decay to
zero stress as the pulse decays to minimum energy. Note that
radial positions that are removed from the axis experience a
similar variation in radial stress although the maximum com-
pressive stresses are much lower than those at the center. The
major difference in the evolution of radial surface stresses due
to the Gaussian and doughnut sources is that the magnitude of
the maximum compressive stresses due to the latter are consid-
erably less than the former (and hence the reason for the dif-
fering vertical scales between Figs. 4 (a) and 4(b)). The energy
distribution due to the Gaussian source is much more concen-
trated around the center of the beam. This is why the Gaussian
source is the most popular mode structure for materials pro-
cessing applications. Similar radial surface stress distributions
are observed in Figs. 4(c) and 4(d) for o3, due to the Gaussian
and doughnut sources,

Figures 5 show the radial distribution of surface stresses at
selected times during pulse activation for the Gaussian and
doughnut sources. The maximum (compressive) radial surface
stress is at the center of the beam since surface elements rapidly
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expand in response to the absorbed energy but are constrained
by ‘‘cooler’’ surface elements surrounding the center. The radial
stress decreases from the center since the energy in the Gaussian
source decreases in a similar fashion. Even though the pulse
has delivered its peak power by r* = 0.27, the maximum radial
stress continues to increase as a short time interval is required
for the material to develop thermal stresses in response to the
absorbed energy. At times t* = 1, 3, the pulse has decayed to
minimum energy and ¢ % exhibits a corresponding decay back
to zero stress. The radial surface stress due to the doughnut
source in Fig. 5(b) behaves in a similar fashion except that the
maximum compressive stress it creates at the beam center is
smaller in magnitude than that due to the Gaussian source in Fig.
5(a). A secondary maximum in compressive stress is reached at
a point that is removed from the beam center. This is due to
surface elements being compressed in this region in response
to the largest energy concentration delivered by the doughnut
source,

The imposition of the zero shear stress boundary condition
(Eq. 8(b)) allows one to investigate only the radial and circum-
ferential stress distributions in the surface plane. It is of interest
to investigate the subsurface stress field since a shear stress
distribution is developed and this is the purpose of Figs. 6-8.

Figures 6 show the evolution of the subsurface stress field at
a depth z* = 1.5 and at selected radial positions relative to the
axis due to heat from a Gaussian source. During pulse activa-
tion, elements in the vicinity of the axis develop small tensile
radial, circumferential, and shear stresses while experiencing
compressive normal stresses. As heat propagates from the sur-
face into the material substrate, shear stresses develop in re-
sponse to the manner in which the rapid expansion of surface
elements is prevented by colder regions in the surface. Hence,
subsurface material elements deform as a consequence of the
manner in which surface elements deform and from the fact
that those elements beneath the surface are further constrained
by colder regions deeper into the substrate and by adjacent
clements. Elements proximate to the axis deform in the manner
shown in the inset figure in Fig., 6(d). Note that the maximum
value of ¢ on the axis is achieved at a time that is nearly twice
the pulse rise time due to the finite time required to heat the
material at z* = 1.5, and the material to subsequently deform
(see Fig. 6(c)). Also, by symmetry, ¢ = 0 on the axis as
indicated by the solid line in Fig. 6(d). As surface elements
relax their accumulated strains during pulse decay from peak
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power, o %, 04, and o ¥ subsurface stresses achieve maximum
compressive values and then decay to zero.

Figures 7 show the radial distribution of the stress field at z*
= 1.5 and selected times due to a Gaussian surface source.
Maximum tensile stresses accumulate at points on the axis for
both o and o and decrease along points removed from the
axis. Tensile stresses continue to increase along radial positions
until the effect of pulse deactivation causes them to gradually
decrease to compressive values, as shown by those curves at
t* = 1, 3 in Figs. 7(a) and 7(b). Note in Fig, 7(d) that
a maximum in the shear stress at t* = 0.5 is reached near
r¥ =1,

Figure 8(a) shows the axial variation of radial stress due to
a Gaussian source at selected times. Extreme values of the
subsurface tensile stresses occur as the pulse reaches its rise
time and shortly thereafter. Compressive stresses occur during
the time when the pulse deactivates, Note that the t* = 0.10,

0.27 curves intersect the ordinate axis at o* = —0.62, —1.18,
respectively, and thus do not continue on to infinity, as might
be inferred from the scale used to plot the figures. Figure 8(b)
shows that the radial stress field is compressive at r* = 1 for
the times indicated in the figure.

Concluding Remarks

The thermal stress field due to a single laser pulse with speci-
fied axial and temporal profiles has been derived for an elastic
half-space. Compressive stresses develop in the surface plane
of the material while the effect of subsurface shear stresses
and a compressive normal stress produces tensile radial and
circumferential stress fields near the axis until material response
to pulse deactivation occurs.

Although the assumption of an elastic response is reasonable
for many laser heated materials, there are situations where a

Fig.6 Evolution of stress field at z* =

1.5 and selected radial positions due

to Gaussian source (8) o %; (b) of; () ok; (d) ok
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material is preheated to a significant fraction of its melting
temperature in order to improve beam coupling to the material.
The preheated material is then exposed to a pulsed heat source
to effect a metallurgical transformation or to remove small quan-
tities through the thermocapillary effect during melting or
through evaporation. In this situation, a viscoelastic constitutive
model is more appropriate and work is underway to incorporate
viscous effects into the model. It is also the case that very few
materials processing applications involve single pulse heating
of a material. In the vast majority of applications, a train of
pulses is delivered to the surface and hence localized heating
and subsequent thermal stresses are much more severe. Models
of both stationary and moving pulsed heat sources are currently
being developed for this more realistic situation. There are im-
portant applications where thin coatings are heated with a pulsed
laser. To estimate the thermal stress fields in these situations,
a problem where the exposed region is of a finite thickness,
rather than semi-infinite, is under development. Finally, many
laser processing applications involve material removal and work

Journal of Applied Mechanics

is underway to understand the thermal stress distribution in
situations where phase change with associated material removal
occurs (see Hector and Sheu (1993) and Hector and Sheu
(1991) for examples of material removal processes involving
a pulsed laser).
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APPENDIX

Dimensionless Form of G and Associated Derivatives
The dimensionless form of G is G*, where
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1 Introduction

The geometry and structure of the interface between two
solid surfaces in contact is of fundamental importance to the
study of friction, wear, lubrication, and thermal and electrical
conductivity. It is well known, that in a general case the actual
contact between two real solids is realized only over a small
fraction of the surface in a discrete number of areas. Conse-
quently, the real area of contact is only a fraction of the apparent
(nominal) area, and the parameters of the actual contact regions
depend on the curvature and roughness of the contacting sur-
faces. Early studies of the contact of rough surfaces are de-
scribed in Archard (1957), Bowden and Tabor (1951, 1964),
and Greenwood and Williamson (1966). More recent studies
are due to Johnson (1985), Liu et al. (1986), Chang et al.
(1987), Bhushan (1990), Borodich and Mosolov (1991, 1992),
Majumdar and Bhushan (1991), Majumdar et al. (1991 ), Hand-
zel-Powierza et al. (1992), and Bhushan and Majumdar (1992).

In general, the structure of most surfaces appears to be ran-
dom on a small scale. Statistical parameters such as the root-
mean square (r.m.s.) of surface height o, slope ¢ " and curvature
o” are conventionally used to characterize the surface
roughness. Several theories based on these parameters have
been developed to model rough surfaces in contact. The most
popular of these is the Greenwood and Williamson (G & W)
(1966) model which is based on the assumption that the surface
is composed of hemispherical asperities having equal radii given
by 1/¢". The centers of asperities are distributed normally about
the mean plane, and it is assumed that the contacting asperities
deform elastically according to the Hertz contact theory. Re-
cently, Chang et al. (1987) modified the original G & W (1966)
model to incorporate the effects of volume conservation when
an asperity deforms both elastically and plastically. Several
other theories of friction, wear, and lubrication based on the
G & W (1966) model have been developed, and are discussed

! Currently at Sandia National Laboratories, Albuquerque, NM 87185-0312.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS .

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.

Manuscript received by the ASME Applied Mechanics Division, Nov. 3, 1993;
final revision, Aug. 1, 1994, Associate Technical Editor: J. T. Jenkins,

Journal of Applied Mechanics

tive surface is approximated using a deterministic Cantor set representation. The
proposed model admits an analytic solution incorporating volume conservation. Pre-
sented results illustrate the effects of volume conservation and initial surface
roughness on the rigid-perfectly plastic deformation that occurs during contact pro-
cesses. The results from this model are compared with existing experimental load
displacement results for the deformation of a ground steel surface.

by Bhushan (1990). However, as pointed out by Majumdar and
Bhushan (1991), Majumdar et al. (1991), and Bhushan and
Majumdar (1992), the parameters o, o', and ¢” are not unique
to a surface, and they depend on the resolution and scan length
of the roughness measuring instrument. Thus, the assumption
of a surface being composed of hemispherical asperities belong-
ing to a single length scale is an over-simplification of the real
surface which contains several roughness scales.

The multiscale nature of the surface roughness geometry sug-
gests the use of a fractal representation. Lately the contact of
rough surfaces has been approximated by fractal models (Liu
et al., 1986; Borodich and Mosolov, 1991, 1992; Majumdar and
Bhushan, 1991; Majumdar et al., 1991; Bhushan and Majumdar,
1992). The method developed by Majumdar and Bhushan
(1991), Majumdar et al. (1991), and Bhushan and Majumdar
(1992) uses the Weierstrass-Mandelbrot function, as described
by Mandelbrot (1982), to simulate surface roughness. Modified
Hertz equations are then employed to model the elasto-plastic
deformation of the surface. In Liu et al. (1986), a fractal surface
is constructed using the Cantor set, which is used to simulate
the electrical contact properties of a rough surface interface.
Similarly, the model developed by Borodich and Mosolov
(1991, 1992) is also based on the Cantor set, and provides
asymptotic expressions for a fractal die penetrating either a
rigid perfectly plastic, or elastic half-space. Hill's solution (Hill,
1950) for a punch in contact with a rigid-perfectly plastic half-
space is employed to estimate plastic deformation. For elastic
deformation, the surface of the half-space is modeled using a
Winkler foundation (Cook and Young, 1985) which corre-
sponds to a distribution of mutually independent linear springs.

As shown by Johnson (1985) and Majumdar et al. (1991),
the contact between two rough surfaces may possibly be mod-
eled as the contact of an effective composite surface with a
rigid flat surface (see Appendix). Hence, a solution for the
deformation of an equivalent surface generated using the Cantor
set can be modified for the problem at hand. However, in this
study only the case of a single rough surface in contact with a
rigid flat surface is considered, therefore, the construction of a
effective composite surface is not required. The method devel-
oped by Borodich and Mosolov (1991, 1992) is generalized
and extended in this paper by allowing the fractal surface to
deform. It is assumed that the fractal surface behaves as an
ideally rigid-perfectly plastic material, which is in contact with
a smooth, rigid, and frictionless half-space. According to this
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new model, the material volume below the fractal surface can
be conserved during the plastic deformation process. Further-
more, the applied Cantor set representation may also provide a
simple framework for examining the effects of asperity interac-
tion during frictional sliding which is a topic of much research.

2 Characterization of a Fractal Surface

Following Borodich and Mosolov (1991, 1992), the Cantor
set surface shown in Fig. 1 is constructed by joining the seg-
ments obtained from successive stages of the Cantor set. At
each stage of construction, the middle sections of the initial
segments are removed so that the lengths of the remaining
segments are 1/f, times the length of the initial segments, where
S > 1. The depth of the recesses (measured from the last step)
at the (n + 1)th construction step of the fractal surface is 1/f,
times less than the depth at the nth step, where f, > 1. Hence,
the horizontal length of the (n + 1)th step is

cee- e o
1 f;- n f; L
while the recess depth is
1 1 n+l
husy = (E) h, = (F) ho. (2)

As pointed out by Mandelbrot ( 1985) and later by Majumdar
et al. (1991), most rough surfaces have a self-affine scaling
structure, which implies that length scales change by different
amounts in different directions. This is also evident with the
case of the structure constructed in Fig. 1. Because of this
fact, methods used for self-similar fractals are not in general
applicable to self-affine structures as described by Mandelbrot
(1985). However, a relationship between the self-affine Cantor
set structure, and a self-affine surface profile z(x) may be con-
jectured through the use of the structure function

S(7) = ([z(x + 1) — 2(x)]*), (3)

where S(7) physically represents the mean square of the differ-
ence in height expected over any spatial distance 7, and {*)
implies averaging over the statistical ensemble of z(x). It has
been shown by Berry (1978) that the structure function for a
fractal profile can be expressed in the form

S(T) = AID—?.T'!I—ZD. (4)
In (4), D is the self-affine fractal dimension, and A is a charac-

teristic parameter of the fractal function referred to as the to-
pothesy. The two parameters D and A completely characterize
the fractal profile and are independent of 7 and, thus, scale
independent. The self-affine fractal dimension D of a surface
profile is dimensionless and falls in the range 1 < D < 2, while
the topothesy A can take on any positive value and has the
dimension of length. Furthermore, the r.m.s. height o of the
surface profile is related to the topothesy through the relation
(Feder, 1988)

AZD 2 Ld—ZD )

2 _ c ; 5

4-2D ©)

where L, is the correlation length of the profile. Using (3) and

(4) and the fact A is a constant, it follows that for self-affine
scaling

Az ~ Ax*P, (6)

where 2-D is equivalent to the well-known Hurst exponent.
As shown by Borodich and Mosolov (1992), a self-affine
fractal dimension for the Cantor set structure in Fig. 1 can be
obtained based on statistical considerations. At the nth genera-
tion, the Cantor set surface contains N = s" segments, each of

length
I n
o= (5g) =

where the parameter s corresponds to the number of asperities
on a repeating segment. For example, the Cantor set surfaces
in Figs. 1 and 2 have s = 2 and s = 3, respectively. Changing
the parameter s provides a generalization for the construction
of an infinite number of different structures based on the Cantor
set independent of the parameters f; and f,.

During an iterative step in the construction of the Cantor set
surface, scaling in the horizontal direction is

Axn-;-! = (ﬁ) AI,,.

X

(7)

(8)
In the vertical direction, the corresponding fluctuations Az, at
the nth generation can be defined by considering the probability
of obtaining the value
1 )
Iy = ™ hu.
(7

9)

L3/8 |-l
R Lp/4

L/ 2—p

D ——

Fig. 1 Fractal surface constructed from the Cantor set with s = 2
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Fig. 2 Cantor set model withs = 3

The actual construction of the self-affine Cantor set profile is
based on deterministic methods, however, it’s relation to a sur-
face profile exhibiting fractional Brownian motion requires
some statistical considerations. At the nth generation, the sup-
port of (9) has a total length L, — L,,, from which the probabil-
ity of obtaining z, is P(z,) = (L, — Ly+1)/Lo and it is found

2y 1
Pz)=(=](1-=).
@=(3)(1-3)

As shown by Borodich and Moseclov (1992), the fluctuation
Az, at the nth generation can be obtained by assuming that Az,
scales as the expected value z,P(z,) in which

Az, ~ zP(z). (11)

It then follows that the expected value of the fluctuation at the
(n + 1)th generation is related to the expected value of the
fluctuation at the nth generation through the relation

(10)

1
Zn+ P(Zr¢+l) = (_)ZFIP(Z\")’ (12)
' fofe
such that the segment fluctuations are related as
|
gy = (———)Azﬂ. (13)
EERVA?
Using (8) and (13) in (6) provides the relationship
Azn-l—l Ax:nﬂl cat
—_— )= . 14
= =) 9

from which the self-affine fractal dimension for the Cantor set
surface is obtained as

In f, & In s
Insf, Insf’

where | < D < 2. Furthermore, the last term on the right-hand
side of (15) defines the fractal dimension D, of the underlying
Cantor set which is the dimension of the collection of an infinite
number of points that falls in the range 0 < D, < 1, and is
uniquely defined through values of s and f, obtained from a
random surface profile.

For the case of a rough surface in contact with an ideally
smooth and rigid counter surface, the fractal dimension D along
with the parameters L, and h, can be determined experimentally
from a surface profile of the rough surface. The fractal dimen-
sion D can be directly obtained from the slope of the structure
function of a surface profile that represents a fractional

D=1-

(15)
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Fig.3 Fractal surface profile intersected by two planes below the r.m.s.
height o

Brownian process, while L, corresponds to the profile length,
and h, is equal to twice the r.m.s. height ¢ which can be obtained
from the topothesy. The self-affine fractal dimension of the
material specimen is related to the self-affine fractal dimension
of the deterministic Cantor set structure through the three geo-
metric parameters s, f;, and f; as given in (15), which provides
one equation with three unknowns. Two other relations for the
parameters f, and f; can be obtained by considering the linear
area that is in contact with a plane that intersects the experimen-
tally obtained surface profile at two separate locations as illus-
trated in Fig. 3. These linear areas can be equated with the
linear areas obtained using the asymptotic results for the area
displacement relation neglecting volume conservation as dis-
cussed in the following section. Thus, this result together with
D, Ly, and hy completely defines the equivalent Cantor set
surface profile of unit depth which approximates a random sur-
face profile of unit depth in a deterministic manner.

For two rough surfaces in contact, the parameters D and A
would have to be obtained from an effective composite surface
profile as described in the Appendix. Through the use of (A5),
D and A can be determined and an effective composite surface
profile can be constructed using the Weierstrass-Mandelbrot
function as described by Majumdar et al. (1991). From the
simulated Weierstrass-Mandelbrot surface profile, the parame-
ters f, and £. can be obtained in the manner described above.

3 Rigid-Perfectly Plastic Deformation Model

According to the proposed fractal surface model, it is as-
sumed that a fractal surface profile of unit depth constructed
with the Cantor set and composed of rigid-perfectly plastic
material is in contact with a smooth rigid half space as shown

Fig. 4 Deforming Cantor set surface withs = 2
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in Fig. 4. It is also assumed that the Cantor set surface is
independent of the technique used to construct it, and that the
limiting (yield) load for plastic deformation (per unit thickness)
of the asperities, is

(16)

In(16), o, is the local value of the yield stress of the deforming
rigid-perfectly plastic material in compression, and L is the
length of the deforming material in contact with the rigid half-
space. The local value of yield stress implies the stress required
to produce plastic deformation at the length scale under consid-
eration, and may be different from the value used on the macro
scale. It is further assumed that each asperity behaves as a rigid-
perfectly plastic axial loaded column and all the material from
the (n + 1)th generation of asperity pairs flows into the troughs
between the asperities when the critical load P,., is reached for
the (n + 1)th generation of asperities. The material volume is
conserved using this assumption, and simultaneously the height
of the nth generation asperities is increased.

With P,., being the critical load at the (n + 1)th generation
of asperities and P, the critical load at the nth generation, the
change in load in transition from the (n + 1)th generation to
the nth generation is

P=g,L,

APy = Py = Pyyy. amn
In terms of the yield stress o, and parameters f, and L, the
change in load is

APN+] = o'y(.f\‘ - l)Lﬂ(l) .

18
T (18)

In (18), the change in load is proportional to the change in
linear area which is consistent with other models for the contact
of rough surfaces under the assumption of plastic deformation
of asperities (Oden and Martins, 1985). When the load is in-
creased from P, to P, the asperities compress by an amount

A“rsw-l = Uy — Uy (19)
Here, u,., is the distance the fractal surface is deformed from
its undeformed state due to the load P,_,, and u, is the distance
corresponding to the load P,. Letting the number of generations
of asperities tend to infinity, and simultaneously accounting for
volume conservation of the deforming material, the displace-
ments can be expressed by

Uy, = XHyG)H, (20)

where

1 i 1\
sl 1 o, e . H=fh.
X ( ﬁ) # Z(ff) it 1)

Here, f, > 1 and f; > 1, therefore, the series which defines y
is a geometric series. The expressions X and 7y are due to the
volume conservation of the plastic deformation process. If vol-
ume conservation is neglected the product X v is taken as being
equal to unity.

The incremental change in displacement can then be ex-
pressed as

n+l
Dityss = XEy(f, — 1)(1) . (22)

f
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Dividing (18) by (22) gives
AP,y _ a,(fi — Dio (L)M'
Au,y  XHy(f.— D) \f)

In the limit as n + 1 — =, (23) can be expressed as the asymp-
totic derivative

(23)

£_nlobu () g,
e H(fi-1) \é ;
where
¢ = XHy. (25)

The asymptotic expression relating the load to the plastic defor-
mation is derived by integrating (24), and using the initial
condition that P = 0 for u = 0. Thus,

p _b (M) (E)ﬂ, (26)
a \f,-1/\¢
where
In f,
Py = o,L,, a=]:£‘ (27)

Equation (26 ) defines the asymptotic load-displacement relation
for a rigid-perfectly plastic fractal surface. As was the case with
the results obtained by Borodich and Mosolov (1991, 1992),
the solution in (26) is based on asymptotic behavior, and will
most likely give the best results for 4 < hy. With this result it
is observed that within the region of applicability, the expression
(15) can be used in conjunction with the expression for « in
(27) to provide the relation
1-D

e (a>0)

ﬂ£=1+Dt.—D €28

which is in terms of the fractal dimension D and the Cantor set
dimension D,.

Dividing (26) by o, gives the real linear area of contact at
any displacement position 1. The equality ¢ = f;h, corresponds
to neglecting volume conservation. In this case the linear area
displacement relation is

=2 (351) )
He @ ﬂ et 1 ftk

Evaluating (29) at two separate values of u and equating the
corresponding values of A, with the linear area from an experi-
mentally obtained surface profile at the respective distances u
below the r.m.s. height o, provides two equations which can
be solved for the geometric parameters f, and f,. This process
should be carried out over a large number of realizations in
order to obtain statistically valid values of f, and f,. These results
can then be used in conjunction with (15) to obtain the value
of s which provides a spatial distribution of the asperities. From
this result it is seen that the load displacement relation given
by (26) can be characterized without use of the fractal dimen-
sion D, however, the relation of f, and f, to D provides further
insight into how the geometric structure of the surface profile
being modeled changes with length scale,

A measure of the error involved with neglecting volume con-
servation during plastic contact can be obtained from the ratio
of the applied load with volume conservation to the applied
load without volume conservation. Denoting this ratio by x it

is found that
1 o
=|l—] =1,
“ (Xy)

which is entirely dependent on the geometric parameters f,
and f,.

(29)

(30)
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4 Results and Discussion

Numerical results are presented in Figs. 5(a-f) for the load-
displacement relationship in a nondimensional form for the Can-
tor set surface shown in Fig. 1. The parameters s = 2 and f, =
1.5 were held constant in this illustrative example giving a
constant Cantor set dimension D, = 0.6309. Results were ob-
tained with and without volume conservation. It is observed in
Fig. 5(a) with D = 1.1, that a significantly larger load is re-
quired to produce the same displacement if volume conservation
is not neglected. This result is also observed in Figs. 5(b-f)
as expected. It is further observed that if f, is less than f;, the
load scales as the displacement to a power less than one. This
result is seen in Figs. 5, (@) and (b) which have the lowest
values of D, and are physically the smoothest surfaces. By
increasing D from 1.2 to 1.3, f, becomes less than f; causing
the character of the solution to change since the load scales as
the displacement to a power greater than one. Physically, an
increase in D is equivalent to decreasing f; (i.e., increasing the
height of asperities on each repeating segment) with the other
parameters s and f, held fixed. This result is consistent with
curves that exhibit fractional Brownian motion as discussed by
Voss (1988), where when the fractal dimension D is increased
the curve becomes rougher with sharper peaks. Thus higher
fractal dimensions give rise to more sharply peaked asperities
which plastically deform at lower loads as observed in Figs.
5(a-f) with the Cantor set model. Increasing D from 1.6 to
1.7 causes f, to decreases to a value less than one leading to
results that are not physically realistic.

Recently, Handzel-Powierza et al. (1992) have conducted
surface deformation experiments on face turned, ground, and
bead-blasted carbon steel specimens (0.45 percent carbon),
which were in contact with a smooth rigid counter specimen.
In all cases, the load-displacement relations follow a sigmoidal
curve similar to that shown in Fig. 6 which exhibits a compari-
son of the experimental data obtained by Handzel-Powierza et
al, (1992) for the ground specimen with a theoretical prediction
obtained using (28). The error in the experimental measure-
ments was determined to be approximately +0.5 um for the
displacements, and +5 MPa for the load. In the early stages of
deformation, the load scales as the displacement raised to a
power greater than one. In the later stages of the deformation
process, the curve changes direction and the load scales as the
displacement raised to a power less than one, which is consistent
with results observed with bulk plastic deformation. Handzel-
Powierza et al. (1992) compare the early stages of deformation
with a modified version of the G & W (1966) model which
only considers elastic deformation of asperities. It is highly
probable, however, that on the first loading in the early stages
of deformation both elastic and micro-plastic deformation of
asperities takes place, with the micro-plastic deformation possi-
bly being much greater than the elastic deformation. With this
in mind, it is observed that the Cantor set model can be em-
ployed to simulate the results that follow the sigmoidal curve
in the early stages of deformation, thus providing a model for
micro-plasticity. As shown in Fig. 6, the agreement between
the theoretical and experimental results is good in the early
stages of loading. For this rough theoretical estimate, the yield
stress was taken as 700 MPa for AISI 1045 steel. It was further
assumed that the profile fractal dimension is D = 1.5 based on
the results obtained by Majumdar et al. (1991 ) for ground stain-
less steel surfaces. The corresponding Cantor set dimension was
assumed to be D, = 0.6228 with s = 3 giving f, = 1.9455 and
f. = 1.2418. The depth h, was taken as 6.6 pm which corre-
sponds to twice the r.m.s. height obtained by Handzel-Powierza
et al. (1992).

It is found that current surface roughness measuring instru-
ments such as stylus profilometers, optical interferometers,
scanning tunneling microscopes, and atomic force microscopes
can be employed to obtain surface profiles of desired material

Journal of Applied Mechanics

specimens. Spectral techniques can then be applied to these
surface profiles to determine if they exhibit fractal characteris-
tics. It has been shown in general (Jossang and Feder, 1992;
Warren et al., 1995) that for most fractal surface profiles at
any particular length scale the Hurst exponent 2- D satisfies all
positive moments used to define the height-difference correla-
tion function (the structure function is the square of the height-
difference correlation function defined by the second moment).
Thus a multifractal representation is not required to define the
fractal surface profile. However, in some cases (Bhushan and
Majumdar, 1992; Warren et al., 1993) fractal surface profiles
do exhibit different fractal dimensions at different length scales
and may require what is referred to as a bifractal or trifractal
representation. This type of representation has not been included
in the present Cantor set model. However, if desired the model
could be modified to incorporate a bifractal or trifractal repre-
sentation at a later time.

Thus, if a surface profile is fractal and can be represented in
terms of a single fractal dimension the formulation for the pres-
ent Cantor set model is applicable and unique values for the
self-affine fractal dimension D, topothesy A, sample length L,
and parameters f, and f, can be determined directly from the
measured data. These parameters are used to reconstruct the
surface deterministically based on the described Cantor set
structure in which the statistics should remain the same since
D and A are the same for both the real and artificial surfaces.
This deterministically constructed Cantor set surface has the
advantage in that it allows for techniques known in mechanics
which are based on Euclidean geometry to be applied to non-
Euclidean geometry since the element on which the technique
is applied is Euclidean although the collection of elements is
fractal.

Because of the periodicity of the Cantor set model it under-
goes the same construction procedure at each hierarchical level
producing contact areas that are all the same size. Therefore, it
is doubtful that this model will provide an exact simulation of
the deformation of a random rough surface. However, the model
does admit an analytic solution, and as proposed by Borodich
and Mosolov (1992), it may in many cases be that (a) the
specific character of a fractal model has little effect on the
asymptotic behavior of the process, and (b) the fractal dimen-
sion D which provides a measure of the rate at which a surface
is changing is of most importance. The solution obtained here
provides further insight into the effect that surface structure has
on the deformation process, and it also provides indications of
the effect that different surface forming processes may have on
subsequent surface deformation. Furthermore, in an averaged
sense the Cantor set model appears to provide fairly reasonable
results, and gives an estimate of the error associated with ne-
glecting volume conservation which is common to many present
models.

For future work this present Cantor set model may have the
potential to be used in the characterization of frictional sliding
of two bodies in contact. In order to describe the frictional
sliding phenomenon, it appears imperative to define the spatial
distribution of contact areas in order to determine the interaction
effects that these areas have with each other. Currently, it ap-
pears quite difficult to determine the statistical distribution of
contact areas (Majumdar and Bhushan 1991; Majumdar et al.
1991), and even if the distribution is obtained it is not clear as
to how it can be applied to study frictional sliding. However,
the spatial distribution of contact areas appears to be a natural
outcome of this Cantor set model, and even though the distribu-
tion of contact areas are periodic, it may provide further insight
into the frictional sliding phenomenon.
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APPENDIX

Equivalent Composite Surface

The contact between two rough surfaces can often be modeled
as the contact between one equivalent rough surface with a
rigid flat plane. For the equivalent rough surface, the structure
function S(7) is given as (Majumdar et al., 1991)

S(T) = {lz(x + T) — 2(2)]*), (A1)
where
z(x) = z1(x) — z2(x), (A2)

and (*) implies averaging over the statistical ensemble of z(x).
In (A2), z;(x) and z;(x) correspond to points on the lower
and upper surfaces, respectively, which are measured from a
reference plane below the lower surface, thus contact occurs
when z(x) = 0. Using (A2) in (Al) gives

S(7) = (lz(x + 1) — z:(x)]?
—2[z(x + 7) — () ][zax + T) — 22(x)]
+ [22(x + 7) — 2(x)]?). (A3)

Since the two surfaces are statistically uncorrelated, the cross
product term in (A3) vanishes so that

S(r)y=(lzi(x+7) = () ]* + [22(x + T) — 22(x)]?),

which reduces to

(A4)

S(r) = 8i(7) + S:(7). (A3)

Therefore the structure function of the equivalent surface is the
sum of the structure functions of the individual surfaces.
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Block on a Rigid Base

The planar rocking of a prismatic rectangular rigid block about either of its corners
is considered. The problem of homoclinic intersections of the stable and unstable
manifolds of the perturbed separatrix is addressed to and the corresponding Melnikov

functions are derived. Inclusion of the vertical forcing in the Hamiltonian permits the
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construction of a three-dimensional separatrix. The corresponding modified Melnikov
function of Wiggins for homoclinic intersections is derived. Further, the 1-period
symmetric orbits are predicted analytically using the method of averaging and com-

pared with the simulation results. The stability boundary for such orbits is also

established.

Introduction

This paper investigates the response of a rigid rectangular
block on a rigid base, in planar rocking motion about its corners.
This problem has been studied by several investigators in the
past. Housner (1963 ) drew attention to the fact that rocking of
blocks is of relevance in earthquake engineering. Spanos and
Koh (1984) observed that for slender blocks the equation of
motion will be piecewise linear. This property was exploited to
construct a symmetric periodic solution. They also conducted
detailed numerical work to arrive at a boundary in the parameter
space beyond which the block would topple. Hogan (1989,
1990, 1992) in a series of papers has extensively studied the
rocking response of blocks. He considered prismatic blocks on
a rigid base under sinusoidal excitation. Initially the impacts
with the base were assumed to cause no energy dissipation. A
variety of periodic orbits and also chaotic motion were found
possible. Further improvements, to include damping, have been
handled numerically. The piecewise linearity of slender blocks
has been used by Hogan also to construct periodic solutions.
Tso and Wong (1989a) have used this property to predict the
existence and stability of harmonic and subharmonic responses.
They followed this study (Wong and Tso, 1989b) by an experi-
mental investigation wherein the existence of three-period and
quasi-periodic orbits were demonstrated. Yim and Lin (1991)
have extended the study of rocking of slender objects by con-
structing the Melnikov function. This helps in identifying re-
gions in the parametric space where, chaotic response may be
possible. Through numerical studies, they further exhibit the
possibility of chaotic behavior in rigid blocks. Shenton and
Jones (1991a, 1991b) have considered the periodic slide-rock
motion of rigid blocks. Augustin and Sinopoli (1992) have
derived the equation of motion of a rocking block including
static and kinetic dry friction. They have also delineated the
region where rocking is possible as functions of static friction
and shape of the block. Recently Lipscombe and Pellegrino
(1993) investigated through theory and experiments the effect
of bouncing of short blocks after each impact with the base.
Their study further highlights the extreme sensitivity of rocking
response to geometric imperfections and errors in the relevant
parameters occuring in the equation of motion,
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The present study investigates the full nonlinear system with-
out the assumption of slenderness and consequent piecewise
linear property. The Melnikov functions for homoclinic inter-
sections of two different types are derived. The effect of vertical
base excitation is also included. It is shown that the modified
Melnikov function of Wiggins (1988) can be constructed when
harmonic vertical and lateral base excitations are simultaneously
present. Further an approximate analytical solution is presented
for a one period orbit, valid for short blocks also. Numerical
results are obtained in the parameter space to illustrate the appli-
cation of the analytical solutions.

Equation of Motion

The system under consideration is shown in Fig. 1. Under
the action of base accelerations «"(¢) and v"(¢) the prismatic
rectangular block rocks about the edge passing through the
points O and Q,. Taking moments of the forces about a corner
the equation of motion for the planar rotation # can be shown
to be :

18"+ I(1 —v)8'|8"|6(8) + WR sin (e sgn 6 — 8)
X (1 +v"/g)+ WRcos (asgnf —@u"lg=0. (1)

Here the primes denote derivatives with respect to time, 6(+)
is the Dirac delta function and sgn (- ) is the signum function.
I is the moment of inertia of the block about a corner; v is the
coefficient of restitution, defined as the ratio of the angular
velocities immediately after and before an impact; W is the
weight of the block and R is the distance of the centroid of the
cross section from a corner. The angle # is taken to be positive
when the block rotates about the corner O, . The base excitations
are taken as u"(t)/g = u,, sin (\y) and v"(1)/ g = v, sin (At).
Now introducing the dimensionless parameters ¢, = (1 — v),
€ = WRIIVE, €3 = upea, €4 = Un€z, & = NJ/\; and changing
the independent variable to 7 = \,;t/27 one gets

8+ €010)6(8) + 4r%€, sin (a sgn § — )
= —4m’; sin (2n7) cos (« sgn & — 6)
(2)

The above equation is valid only if rocking gets initiated.
The condition for initiation of rocking is €3 = €,(1 — €4/€3) X
tan a. In case the horizontal forcing is absent, the frequency
ratio ) in the above equation is undefined and hence minor
modifications are needed. The equation of motion for a block
driven by only vertical excitation is taken as

0 + €,810|6(8) + 4% sin (a sgn 6 — )
= —47 %, sin (277) sin (a sgn 4 — ).

— 47, sin (2m§27) sin (e sgn 6 — 8).

(3)
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Fig. 1 Rocking rigid block

Here the new dimensionless parameters es and € are defined
as es = WR/IN2, €6 = v,¢s. In this case, in order that rocking gets
initiated, the initial conditions should be nonzero and e; > ¢;. All
the parameters excepting e, and e are taken to be small quantities.
Further, the time variable T is replaced by ¢ for convenience.

Vertical Input as a Small Perturbation

Equation (2) which represents the more general case can be
recast as

9r=ﬁ
b=fr+ g
g=1 (4)

where
fi=0 f, = —d4n%; sin (e sgn 6, — 8,)
g2 = —€,0,]0,|6(6,) — 472, sin (27t) cos (a sgn 6, — 6,)
— 477, sin (2m() sin (« sgn 6, — 8,).

The Separatrix

The above equations constitute an autonomous Hamiltonian
system if €, = €3 = ¢; = 0, with

H(8,, 6,) = 0.58% + 4%, cos (a sgn 8, — 6,).
0, = f.JI

The phase plane for such a system is shown in Fig. 2. The
system has three singular points, namely a neutrally stable cen-
ter at (6,, 6,) = (0, 0) and a pair of unstable saddle points at
(6, 8;) = (*a, 0). The saddle points are connected by the
separatrix §, which is the level curve corresponding to H( *«,
0) = H, = 4n’c,. An explicit expression for S can be found
by solving the differential equation

(5)

0.565 + 477, cos (a sgn 6, — 6,) = 4n’e, (6)

with the initial condition #,(0) = 0. The expressions for the
homoclinic trajectories are

8,-(t) = xsgn (H)[a

— 4 tan"' {exp(—2we)?t sgn () tan (a/4))}] (7)
G2 (1) = =[1 + tan®(a/4) exp{ —4meit sgn (1) }]™"
X [8mey*tan (a/4) exp{—2mei?rsgn (£)}] (8)
The separatrix S is given by
§={04,04}U{6-,0,-}U{e,0} U (-0} (9)

where («, 0) and (—ea, 0) are the limit points for the trajectories
#,.(t) and 6,_(1), respectively, as = . It may be noted that
in the above derivations, the relations sgn(#,.) = sgn (1), sgn
(f#,-) = —sgn () have been used.
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a;mN

Fig. 2 Phase plane of Eq. (5)

Melnikov Function ;

For the present problem possibilities of homoclinic intersec-
tions of the stable and unstable manifolds exist. In such cases,
simple zeros of the associated Melnikov function would indicate
transversal intersections between the stable and unstable mani-
folds. This in turn would hint at the possibility of chaos. Here
it may be pointed out that the functions, f; and g, are C' except
at § = 0. Even for such a case, it can be shown that the perturbed
homoclinic trajectories are e-close to the unperturbed ones. Fur-
ther, it may be geometrically demonstrated (Appendix) that
transversal intersections between the stable and unstable mani-
folds are not possible whenever #, = 0. Therefore the transver-
sality arguments (Wiggins, 1990) are not violated. Hence if
q' denotes the O(¢) correction to the unperturbed homoclinic
trajectory, g, then ¢’ can be expressed piecewise continuously
by the first variational equation

q' (1, 1) =Df {g(t — 10) ) g’ (¢, to)

+8{q(t — to), £}, 1,10 € (=, 0) U (0, =) (10)
where fand g are vector functions defined as
f={fi £} andg= {8 g}’ (11)

and D stands for the Jacobian of the vector function f with
respect to its argument ¢. It may be mentioned that 8, = 7 =
o = 0 corresponds to a point of discontinuity where the first
variational Eq. (10) is not meaningful.

Now, referring to Fig. 3, it may be argued that two types
of transversal intersections are possible. In Type I, stable and

Qus + 20, + O(E")

L
@

0,
Qu = (91+u-020ul Qs = (ohs-oZas}
[ f(d.)
= r"”’ ___"—‘_‘-
et ‘\“H“ s 91
j‘—h‘-_‘___-
Gs = (B582.) R
q,+8q' +Ofe)

Fig. 3 Poincaré section of the perturbed phase plane of Eqg. (4)

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



unstable manifolds of two different hyperbolic fixed points may
intersect. Thus the existence of homoclinic points p; €° ¢4, N°
¢+ 1 investigated. On the other hand if ¢; < 1, i.e., if the
maximum distance of separation of the unperturbed stable and
unstable manifolds of the same fixed point is O(e€), then it is
possible that homoclinic points of the type p, €° ¢, N° g,
may exist even under a perturbative field of O(e). This is
referred to as homoclinic intersections of Type IL

Homoclinic Intersections—Type 1

With reference to Eq. (4), the Melnikov function may be
found from the well-known wedge product (Guckenheimer and
Holmes, 1986)

M, = f £{0,:(1), 0:.(2))

A g(01.(1), 02.(0), (1 + to) }dt.  (12)

Here the subscript ‘A1’ stands for homoclinic intersection of
Type 1. It is noted that the Melnikov function corresponding to
{6,-, 8-} would be identical to the above. Now expansion of
the right-hand side of Eq. (12) followed by suitable simplifica-
tion leads to

M, = —8w%6(1 — cos )
— 641,73 %€, tan («/4) sin (27t,)
— 641, %¢, tan (a/4) cos (270y) (13)

where
I, = r {1 + tan®(a/4) exp(—4mwes?t)} 'exp(—2me?t)
]

X cos (2nt) cos [4 tan™' {tan (a/4) exp(—2mel?t)}]1dt

and
I, = f {1 + tan®(a/4) exp(—4dmwes?t)} !
(V]

X exp{—2me}?t) sin (2n§2)
X sin [4 tan™'{tan (a/4) exp(—2mei?1))1dr. (14)

In deriving the above expressions for M, the properties of
the separatrix, §, namely, 6, () = 6,.(—t), and 6,.(1) =
—6,.(—t), have been used. Equation (13) contain [, and I,
which are infinite integrals. An alternative expression for M,
can be derived which is computationally more convenient by
observing that 8,.dt = df,.. Use of this in Eq. (12) leads to

My, = =872 e,(1 — cos a) — 872, sin 271K,
+ 8%, cos (27K, (15)

where
K, = .r cos [(1/€®) In {tan (0.25(a — ¢))/tan (0.25a))]
o

X cos (o — ¢p)dep (16)
and

K,= Jm sin [(Q/e3*) In {tan (0.25(a — ¢))/tan (0.25a)}]

1]
X sin (a — ¢)dep. (17)

It is to be noted that the Melnikov function for the combined
forcing as given by Eq. (15) is valid only for rational values
of 2. Only in this case, we can find a least common multiplier
. of the time periods of horizontal and vertical excitations
given, respectively, by T, = 1.0 and 7, = 1/ such that g,(#,,

Journal of Applied Mechanics

0, 1) = g2(6,, B2, t + 4.). In case the horizontal excitation is
absent, the equation of motion is given by Eq. (3). Again the
Melnikov function can be found as

My, = —872%e5(1 — cos &) + 8m2eq cos (2mtg) L.

(18)
Here L, is given by

L= r sin [(1/€*) In {tan (0.25(a — ¢))/tan (0.25a) }]
n
X sin (@ — ¢)dd (19)

Homoclinic Intersection—Type 11

It is here assumed that €, <€ 1. Referring to Fig. 3, the vector
notatiﬂn g+ = (Q+s u q+!r) = (9I+n 924-3} U (el'ﬂl) 92+r¢) i.'i
introduced for the upper half of the unperturbed homoclinic
orbit. A similar notation is valid for g_, the lower half. The
subscripts s and u stand for the stable and unstable manifolds.
Clearly, the unperturbed homoclinic orbit is given by ¢ = (g.
U g-). Now a separation vector is defined between the stable
and unstable manifolds of the perturbed fixed point as d(#,) =
[‘g+.(to) — © g-.(tu)]. Here, t, is an arbitrary time when the
Poincaré section as shown in Fig. 3 is chosen. The time-depen-
dent distance function is

A, to) = F{ql(z — 1)} A {qi(t, 1) — qL(t, 10)}
= A.i(rQ I(I) == An(xs fIJ) (20)

so that the Melnikov function for homoclinic intersections
would be given by

Mya(to) = A(ty, to)

= f A.‘(:, ID)dt - fn AII{I! rﬂ)df' (21)
t —or

Here, ¢, and q_ are the O(¢) corrections to g, and g, given
by the first variational equation (10). Now, following Gucken-
heimer and Holmes (1986), one can show that

At )= 1 {g(t — 1)} Aglg.(t—to), t}. (22)

Similarly, taking the time derivative of A, (t, f,) and using Eq.
(10), one has

At 1) =Df{g.(t— 1)} £ {gi(t —to)} A g' (1, to)
+ £ {q:(t—t)} A[DE{g-(t—1t) }q_(2, 1)

+glg-(t — 1), t}]. (23)

It is noted here that A,(—%, ;) = 0. Further, in the present
problem,

fl(gl, 6,) zfl(gl) =6,
and
Afa (014, 65.)/00,, = (6, 62-)/90,_. (24)

Expansion of the right side of Eq. (23), use of the above condi-
tions, and finally substitution of the resulting expressions in Eq.
(21) followed by a change of variable from ¢ to ¢ + ¢, leads to
the following Melnikov function

M, = J': fl{g.()) Aglg:(2), (t + 1) }dt

+ fa f{g.()} Aglg-(1), (¢t +15)}dt (25)

for homoclinic intersections. Further simplification is possible
by noting that along the unperturbed separatrix, 8,.(¢) =
—#6,_(1t) and 6,,(t) = —#,_(1). This leads to

MARCH 1996, Vol. 63 / 57

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



My, = —8m%€6(1 — cos &)
— 872, sin (27ty) K, — 872, sin (2nQ) K,  (26)

Here
K, = fa cos [(2/e3*) In {tan (0.25(a — ¢))/tan (0.25a)} ]
0

X sin (o — ¢)dd. (27)

It is seen that for €, = 0, we have M;, = M,,. Hence the
onset of chaos via Type I and Type II intersections follow the
same pattern for blocks driven by only the horizontal accelera-
tion. In case, ¢; = 0, one gets the following expression for the
block driven by only a vertical excitation

My, = —8m%,es(1 — cos &) — 872 sin (27to) Ly, (28)

where
L= .r cos [(1/€}*) In {tan (0.25(a — ¢))/tan (0.25a))]
0

X sin (a — $p)dg. (29)

Vertical Input as Parametric Excitation

Wiggins (1988) has developed a method which is more gen-
eral than that of Melnikov. Parametric excitations with large
amplitudes but with small frequencies can be handled by this
approach. For this purpose, Eq. (4) is rewritten as

8". =h
bh=f(H+g
=0
=1 (30)
Here
fi(8y, 8;) = 6,
(6, 82)

= —4n%;, sin (e sgn 6, — 6,) (1 + (es/€;) sin (272)}
820y, 05, §) = —5192|92|5{91)
— 4%, sin (2myr) cos (@ sgn 6, — 6;) (31)

where z and y are modulo 1/ and 1, respectively.

Three-Dimensional Separatrix

It is observed that the above system is Hamiltonian when ¢,
= €3 = 0. The time variable for such a system gets uncoupled
from the rest of the equations. The hyperbolic fixed points for
this case are (—a, 0, z) and (a, 0, z) for all €, < ¢, and for all
z in the interval (0, 1/§2]. The corresponding phase space is
illustrated in Fig, 4. The Hamiltonian is given by the energy
functional

H(8,, 62, z) = 0.56% + 47, cos (a sgn 6, — 6,)
X {1 + (ealer) sin (272)}. (32)

To obtain the expressions for the homoclinic trajectories the
above equation is solved for Hy(z) = 4n%,{1 + (es/€;) sin
(27z)}. This leads to

61.(t, 2) = xsgn () [«
— 4 tan~" {exp(—2mu(z)t sgn (1)) tan (a/4)}] (33)

58 / Vol. 63, MARCH 1996

Z=Z,4+1/0

S ——

8,

\/

R

z-Z,
Fig. 4 Phase space for the system of Egs. (30)

-

and

8,.(t, 2) = *[1 + tan?*(a/4) exp{ —4mu(z)t sgn (1)}]~

X [8wu(z) tan (a/4) exp{ —2mu(z)t sgn (¢)}]1 (34)
where u(z) = [e2{1 + (es/€;) sin (27z) }1'2.
The separatrix, S, for this case is given by
S= {0, 0:,2} U {6, 8,-, 2}
Ufea, 0,2z} U{—a,0,z}. (35)

Wiggin’s Modified Melnikov Function

In further work, it is assumed that 2 < 1. This means that z
is a slow time variable. The modified Melnikov function, M,,(t,,
z), which can detect the homoclinic intersections at a three-
dimensional Poincaré section based at r, as given by Wiggins
(1988) is

M, (15, 2) = f (fig — fag)dt

+0 f (fi(3f)82) — £(8fi18z) ) edt. (36)

Here
ﬁ=ﬂ[q(r§z)]’ fZ:fZ{q(t!Z)];
81 = & [Q(f; Z), (f + lr0)}3
8= g{q(t,z), (t + 1)} and
q(t, z) = {6i(1, 2), 6(8, 2) }.
Use of Egs. (32), (33), and (34) in Eq. (36) and subsequent
simplification leads to
M, = —8m%e,{1 + (es/€z) sin (27m2) } (1 — cos )
— 87 %, sin (2mtg) K, + 16772 cos (2nz)K,,. (37)
The integrals X,,, and K,,, are given by
Ky = Jm cos [u(z) In {tan (0.25(a — ¢))/tan (0.25a) }]
0
X cos (a — ¢p)dd (38)
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K= fﬂ [4m%€; { £(2) }]1n {tan (0.25(a — ¢))/tan (0.25a) ) ]

1]
X sin (¢ — ¢)de  (39)

If &5 = 0 in Eq. (37), the Melnikov function with only the
vertical force acting is obtained.

Numerical Results

First the Melnikov function, M,,, as given by Eq. (15) is
considered. Given a, 2, ¢, and ¢, the following relation be-
tween ¢, and e, is obtained for the zeros of M,

€3 = (1/K, sin (27ty) { €4 cos (27Q20) K,
(40)

Now for any €, one can find €;(7,). The Melnikov boundary
M, in the parameter plane ¢, — ¢, is defined as the graph of inf
{ea(ty) for all 14} versus ¢,. In Figs. 5 and 6, the effect of
changing the damping parameter ¢, and the shape parameter o
on M, is shown. These results refer to the case when only the
horizontal excitation is acting. In this case, the condition for
initiation of rocking would be e; = €, tan @. These rocking
initiation curves (RIC) are also shown in these figures. When
the effect of vertical excitation is included homoclinic intersec-
tions of both the types are possible. For constructing the corre-
sponding Melnikov boundaries one has to search for the zeros
of Egs. (15) and (26) such that es(t,) is minimized. However,
it is not readily possible to fix up such a 7, that minimizes ¢;
in the €s-€, plane. It is therefore required to plot several graphs
of ei(ty) versus ¢, for various 7, values and then numerically
find out the curve corresponding to inf { e;(#,) } versus e,. This
final result is shown in Fig. 7. In Fig. 8, to locate the modified
boundary of Wiggins, Eq. (37) is set equal to zero and several
graphs of inf {e&3(#y, z)} versus e, are plotted for different
values of z. The modified boundary M,, corresponds to z = 0.5
except for extremely small values of €. This result is also
compared in Fig. 8 with the usual Melnikov boundary M, as
given by Eq. (15). For the parameters chosen the modified
boundary is weaker than the Melnikov boundary. However,
Wiggin's modified approach will be valid for large values of
€4 also.

— €&l —cosa)}.

Symmetric One-Period Orbit

The Melnikov boundary, for which numerical results are pre-
sented, divides the parameter space into two regions. Below
this boundary only periodic solutions are possible. Above the
boundary, however, the solutions are not necessarily periodic.
With this in view it would be interesting to ask whether bound-
aries for specific types of periodic solutions can also be ob-
tained. This requires extensive numerical work and is not under-

0.151
RIC (xe0.3) ,
0.11

ér, ¥ 5 £=0.35

0.051 7 i £,=0.20
N,,_,__,_._.-.'——-—-—'—'_'_'_-_'—-_._ﬁ'_

L ‘ =002
0 T T —— |

0 0.1 0.2 0.3 0.4

e
Fig. 5 Etfect of damping on M,, only horizontal forcing = 0.3
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|
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Fig. 8 Effect of shape parameter on M,, only horizontal forcing €, =
0.20

taken here. On the other hand, an analytical solution is found
for a symmetric one period orbit. No assumption on the slender-
ness of the block is made, but the damping is assumed to be
small so that, the discontinuity at 8§ = 0 can be smoothed. The
solution valid in the interval (—a = # = «) is taken in the
form

B(tr) = A cos 3, 8(1) = —27A sin 8 (41)

where, 8 = 2xt + ¢. If A and ¢ are slowly varying, the classical
averaging method leads to

A=X + X,cos ¢ + X; sin ¢
b=V + Y,cosdp + Yysin ¢

(42)
(43)
where
X, = —2¢A?
X, = mes(Jy + J3) cos
+ (8/3)ea{Jy + (7/5)J5 + (23/35)Js) sin
X: = —(4/3)e3J, sin &
Yi=—m+ 4(e/A)(Jo — (2/3)J, — (2/5)J,4) sin «
— 2m(ey/A)J,| cos a
Y: = (5/6)(eafA)J, sin a
Vs = m(es/A) | —Jo + Jo)} cos @ + (e3/A)
X {(—25/6)J, sin a + (16/15)J5 + (17/210)J5)}. (44)

Here J,(A) are Bessel functions of the first kind and order
n. While deriving the above expressions the first three terms in
the Fourier expansions,

cos (A cos B) = Jo(A) — 2J5,(A) cos 28
+ 2Ji(A)cos 48 — ...

sin (A cos 8) = 2J,(A) cos 8 — 2J5(A) cos 38
+ 2J5(A)cos 58 — ...

have been retained, In the steady state, A = ¢ = 0, This leads
to the transcendental equations

(XY, — X3) (XY, — XiY))?
+ (XY, - X1¥3)*) — 1 =0 (46)
tan ¢ = (X5V, _XIY.’\)_l(XIXZ‘_X‘ZYI)- (47)

Solution of these equations leads to the steady-state values of
A and ¢.

(45)
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Fig. 7 Effect of vertical excitation on M, €; = 0.025, a = 0.55, ¢, = 0.2,
=02

An advantage of analytical approaches is that one can perform
a stability analysis on the solution. It is easily seen that the
divergence of the vector field V, = { fi(f; + g2)) " as given by
Eq. (4) is

(VVy) = —2€,0; sgn (6,)6(0,). (48)

Since #, sgn (#;) > 0, the phase-space of the system contracts
by jumps whenever @, = 0. But the assumed continuous one
period orbit, given by Eq. (41) cannot account for these jumps
in every cycle. However, on an average with the assumed solu-
tion the divergence over one cycle is

((VV))) = —2€,(1/2m) f B B

% sgn (sin B)d(cos B)df = —4Ae,. (49)

Over a long period of time this average divergence contracts
the phase space exponentially by the same amount as given by
Eq. (48). Thus the stability of the averaged steady-state solution
(A, ¢) can be studied by considering the variational equation

i + 4Ae b + [ —4m3; cos (asgn 8 — 8)
+ 47, sin (271) sin (asgn 8 — v =0 (50)

Here # is a known periodic function and hence through the
eigenvalues of the Floquet transition matrix, one can study
whether the variation v grows or decays exponentially. This in
turn establishes the stability boundary of the one-period solution
given by Eq. (41).

The transcendental Eqs. (46) and (47) have been solved
iteratively to obtain several possible symmetric one period solu-

0.3

RIC /
0.264| ’/
: /
02| | /
< 015§ 4
N Mo
06 0.8

Fig. 8 Wiggin's modified boundary M, €; = 0.025, ; = 0.1, « = 0.55, 2
=041
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Fig. 9 Numerically and analytically computed symmetflc 1—period or-
bits €4 = 0.2, €; = 0.03, ¢ = 0.11, « = 0.55

tions, for a block under only horizontal excitation. In Fig, 9,
one such solution is presented and compared with the exact
solution numerically obtained using the Runge-Kutta scheme. It
is observed that the comparison is very favourable. The stability
boundary of these solutions in the parameter plane (€, — €3) is
presented in Fig. 10 along with the Melnikov boundary for
homoclinic intersections of Type I and the corresponding RIC.

Discussion and Conclusions

The purpose of this paper has been to bring into focus the
importance of the Melnikov function in understanding the dy-
namical behavior of a free-standing block rocking on a rigid
base. The presence of homoclinic trajectories in the unperturbed
phase space allows one to construct the Melnikov function and
to check for the possibility of homoclinic intersections, when
the system is perturbed by damping and external forcing. In
previous studies, the assumption of piecewise linearity has been
made to find the Melnikov boundary. Here this assumption has
not been used. The effect of vertical excitation has also been
included. There are two ways in which the vertical excitation
can be handled. First, the amplitude can be taken to be small
and thus the excitation can be treated as a small perturbation.
The second approach is due to Wiggins wherein, the frequency
parameter of the vertical excitation is treated as a small quantity.
The Melnikov boundary (M,) partitions the parameter space
such that below the boundary only periodic trajectories are pos-

0.04
B

0 T
0 0.02

Fig. 10 Stability boundary of 1-period solutions and Melnikov boundary
€ =02 6, = 0.0, ¢ = 055
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sible. In the present problem, an interesting question is the
toppling of the block. For this to happen the trajectories have
to cross the unperturbed separatrix. Hence, one can take the
boundary M, or the modified boundary M,,, as limiting curves
below which toppling cannot occur. Thus crossing this boundary
in the parameter plane would be a necessary condition for top-
pling of the block. It is interesting to note that a one period
symmetric orbit not hitherto reported in the literature can be
analytically obtained. The stability of this solution can also be
analytically studied. This provides a further boundary in the
(€2-€5) parameter plane (Fig. 10) to refine the region where
complicated response may be possible. However, the present
results provide only necessary conditions. Further structuring of
this region to demarcate multiperiod, quasi-period and toppling
solutions is necessary. The concept of lobe dynamics and the
transport of the points in phase space across the pseudo-separa-
trix (Wiggins, 1992) may prove useful in studying the toppling
characteristics of the block.
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APPENDIX

Proposition Al

Let g,(t — ty) and “q,(¢, #;) denote the unperturbed and
perturbed stable homoclinic trajectories for the system of Eq.
(4) on a Poincaré section based at ty. Let “g, (1o, to) — ¢q,(0)
= 0O(¢). Then ‘q,(t, 1y) — q.(t — t,) = O(e) V1 € (15, »).

Journal of Applied Mechanics

A similar proposition holds true for the unstable homoclinic
trajectory with time reversed.

Proof. Let f and g be vector-valued functions as given by
Eq. (11). The function g may be equivalently represented as

g({qﬂ 'r‘ E} = EE(CQH t! E)' [Al)

This leads to
[“q:(t, to) = q(t = 1o)| = |“q:(to, to) — 4,(0)|

+ f | £Cqs(€, 10)) — £(q (€ — 10))| dé

te f |8("qs(&, 10), & )] dE. (A2)

Referring to Eq. (4), the function g may be decomposed as

E=3+1 (A3)

where
Ed = {0 - '92|92|5(6t)}r- (A4)

Since f and g° are C° functions, hence M = 0, and L = 0,
such that in an interval [1,, t,], where t;, > to and 1, — 1, =
o(l1),

|§‘.(‘q55 r’ E)l £ M

and

[£(°q:(£)) — £(q,(6))| = L['q;(&) = q;(&)]. (AS)

Further, let there be I impacts of the block with the ground
in [#o, £;]. It may then be readily shown that

f 18°(‘a.(8), & ©)] d€ = K, (A6)

where K = 2 |64, _,.

In other words, K is the sum of the absolute velocities at
impacts. Substitution of (A6) and (A7) in (A3) followed by
the use of Gronwall’s lemma leads to
I‘g: — g:| = [1°q:(to, to) — q,(0)|

+ e(K + M/L)] exp[L(t — t,)]. (A7)

Hence 3 a constant Q independent of ¢, such that ‘g, — ¢, =

O(e) forty =t =ty + Q/L. Since “g, is a stable manifold, ‘g,
—q,=0(e)forrp=t <o, O

Proposition A2
A transversal intersection of ‘g, and ‘g, is not possible at 8,
=0.

Proof.
p, iff

‘g, and g, has a transversal intersection at a point

T,(q) + T,("q.) = R%. (A8)

At 8, = 0, ‘g, and ‘g, undergo a jump along the #,-axis.
Therefore the only way ‘g, and ‘g, may intersect is along a line
on the #,-axis. Let p’' €° g, N* g, be one such intersection.
Then

T,(‘q) + T ("g) =R'. O (A9)
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Integral Equations for a Three-
Dimensional Crack in an Infinite,
Fluid-Filled, Poroelastic Solid
With Zero Permeability

in One Direction

Fundamental solutions for an instantaneous point force and an instantaneous fluid
point source are derived for an infinite, fluid-saturated, poroelastic solid with zero
permeability in one direction. Applying these solutions and Cleary’s reciprocal theo-
rem to the three-dimensional problem of a pressurized plane crack yields two integral
equations, which relate normal tractions and fluid pressure on the crack faces to
crack opening and fluid injection rate per unit fracture area. An important application
of these equations is the prediction of hydraulic fractures induced during water-
flooding of reservoirs to enhance gas and oil recovery. Zero permeability in one
direction may be a good approximation for the case in which the reservoir is sand-
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wiched between two impermeable rock layers.

Introduction

In our previous paper (Kurashige and Clifton, 1992), a pair
of integral equations was derived for the three-dimensional
problem of a pressurized plane crack in an infinite, isotropic,
homogeneous, fluid-saturated, poroelastic solid with isotropic
permeability, using the known fundamental solutions (Cleary,
1977) for a point force and a fluid point source. These integral
equations relate normal tractions and pore fluid pressure on the
crack faces to the crack opening and fluid volume supply rate
per unit fracture area. These equations were intended to apply
to the prediction of hydraulic fractures induced during water-
flooding—a technique used to enhance the recovery of gas and
oil by injecting water into some wells to force gas and oil to
neighboring wells. Numerical solutions based on these equa-
tions were obtained recently for the water flooding case (Clifton
and Wang, 1991).

The aim of the present paper is to obtain a similar pair of
integral equations for a pressurized plane crack in an infinite,
elastically isotropic, homogeneous, fluid-saturated, poroelastic
solid having zero permeability in one direction. Because reser-
voirs of gas and oil are sandwiched between impermeable for-
mations, the water injected into the reservoir from the well bore
or from the induced fracture flows mainly in the horizontal
direction, when the height of the fracture is comparable to the
height of the reservoir, as in most cases except at early times.
Therefore, the assumption of zero permeability in the vertical
direction but non-zero permeability in the horizontal directions
may be a good approximation for many cases of practical impor-
tance.

In the first half of the paper, fundamental solutions are ob-
tained for an instantaneous point force and an instantaneous
fluid volume source in such an infinite solid with vanishing
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permeability in one direction. Using these solutions for the
stress field resulting from an infinitesimal segment of a disloca-
tion line (Clifton and Abou-Sayed, 1979; Kurashige and Clifton,
1992), the second half has derived the required pair of integral
equations.

Basic Equations

Let us consider an elastically isotropic, homogeneous, fluid-
saturated, poroelastic solid having zero permeability in one di-
rection. Denote total stress, pore fluid pressure, average strain,
pore fluid volume change per unit total volume, and pore fluid
volume flux by oy, p, €;, AV, g;, respectively. Constitutive
equations for such a poroelastic material are given by (Cleary,
1977)

oy = Lypg€pq —

v
= 26(6,}; + s Euﬁ.-;) — apby, (1)
B(Vn - U) 3
AV = +=p), 2
2GB(1 + v)(1 + v) (J“ BP) 2
dp dp
I = TK _—, i 0‘ TRy 3
4 Kox' P % & dz 2
where a is Biot’s coefficient of effective stress given by
(v, — v
( ) (4)

*TBA+ vy -2) "

and G, B, v, v,, k are the shear modulus, Skempton’s pore
pressure coefficient, drained and undrained Poisson’s ratios, and
permeability in the x and z-directions. We have made the zero-
permeability direction coincident with the y-axis of the
Cartesian coordinates (x; ) or (x, y, z) so that the pore fluid flux
vanishes in the y-direction as in Egs. (3). In what follows, we
will use either (x;) or (x, y, z) depending on which is more
convenient.
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Since we shall deal with the quasi-static case with body force
f; and fluid volume source ¥ per unit volume, the equilibrium
equations and the pore fluid diffusion equation are

(3)
(6)

As in the linear theory of elasticity, the average strains are
defined in terms of the average displacement u; by

Tijj +ﬁ = Ov
Gi; + dAV/at = f!'l-

€y = 21(“:_,' + ). (7)
In the above and what follows, the usual summation convention
holds for repeated indices, unless otherwise mentioned, and
commas denote partial differentiation.

Equations (1) through (7) constitute a full system of govern-
ing equations for an elastically isotropic, fluid-saturated, poro-
elastic solid with zero permeability in the y-direction. After
some manipulations with these equations, the equilibrium equa-
tions and the diffusion equation are expressed in terms of the
displacements and the pore fluid pressure as follows:

(41 1
v2ni+m“ﬁﬂ_'&p.l =-gh (8)
14 a a; *p
;A2 il O i
(V ¢ 6:)(1‘“ GP) G ay?
=-Zp =1, )
G ac '
where
1 -2v 3(1 - 2v,)
a'):i‘ al=—’
2(1 = v) 2B(1 + v,)
3(1 = 2u)(1 — v,)
Oy = 3
2B(1 + v, )(1 = v)
@ b (10)

T20-wd-w)

Although it has not appeared in Eqgs. (8) and (9), a; is defined
in (10) for later use.

Fourier and Laplace Transforms

Fourier and Laplace transforms and their inverse transforms
are used in the following sections. For an arbitrary function f( x;,
t), and for Fourier transform and Laplace transform parameters
denoted by &; (corresponding to x;) and s, the transforms and
their inverses are defined as follows:

- 1
fg, 1) = \/(—2;; J:,f(x_:, 1) exp(i&;x;)dx;,

(no sumonj) (11)
l o

= ] ~. LG d ’

fx, 1) m J'_mf(& 1) exp(—ix;€;)dé;
(no sumonj) (12)
fH, 8) = LIf(x, )] = _rf(x;, 1) exp(—st)dt, (13)

(]
1
fop = [ rrm s epenas,  14)
Br

where Br means the Bromwich integral path. Furthermore, the
triple Fourier transform will be expressed by the same raised
hat symbol used for the single Fourier transform.
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Fundamental Solution for Instantaneous Point Fluid
Volume Source

Consider an instantaneous point fluid volume source with
unit intensity at the origin of the Cartesian coordinate system
(x;) at time ¢ = 0. The associated forcing fields are

rf=8(x)6(»)8(2)8(r), f =0, (15)

where 6(+) denotes the Dirac delta function. Note that, since
the permeability vanishes in the y-direction but not in the other
directions, the fundamental solution for the fluid source is axi-
ally symmetric about the y-axis. Taking into account Eq. (15),
and applying the triple Fourier and Laplace transforms to Egs.
(8) and (9), one obtains, with the help of the relation aa, +
Q) = ds,

s 1 G/(aas)
P e e+ e+ s’

(16)

a* - 1 CEQJ"CY; f{;
DU m) (6 + €3 + s (68

The pore fluid pressure p can be obtained easily by inverse
transformation of Eq. (16) as

(17)

_ Gl(aay) 6(y) o~ ¥+ eRi(aen)
(2m)? 2ct '

which shows that the fluid supplied at the source diffuses in the
radial direction only in the plane y = 0 because of the zero
permeability in the y-direction.

To evaluate the infinite integrals associated with the Fourier
inversions of Eq. (17), we must apply the following variable
transforms to it:

(18)

Xy=rcos8, x;=y, x;3=rsiné, (19)
Si=pceose, L=& &=psing, (20)
u, =1y cos 0 + ussin @, wug = —u; sin & + wus cos 6. (21)

By these transforms and the inverse Laplace transform, we ob-
tain the nonzero displacement components in the form of triple
integrals:

agfazr 2, - ple
= — e d
“Eenrd ? ¥
T 5 —i¥E
X cos ¢he ~iPreosey, J@ 2 __a , (22
[ cos gerreneas e @)
ﬂfu)‘ﬂ.’z J‘m _pzﬂ
U, = pe dp
(1]

YT (2n)?
" —ipreos. = E‘Ee_jyé
. J.—K e Tt e J‘“w 721 dg.

In these equations, the last two integrals can be evaluated with
the help of the formulae

(23)

[ .
L[ et = sy,
2r J-:

E

= | cos ety = J, (),

e ] (24)
r ﬁ a d& i x g—plyl'
- p? + €7 p
—iyE
§e ™ gt = —isgn(yyme?,  (25)

—p? + £

where sgn (y) = =1, 0,1 fory < 0,y =0, and y > 0,
respectively. These formulae are found in references (Grad-
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shteyn and Ryzhik, 1965; Sneddon, 1951) or derived from the
formulae in them. The results of the evaluations are

Uy = a_afazf pe”**e=?VL1\(pr)dp, (26)
4 Jo
=%isg‘wr pe~r1e=o0 Jy(pr)dp. (27)
(i 0

Because of the axial symmetry, u; = 0. Note that u, has a
discontinuity at y = 0. This discontinuity comes from the as-
sumption of zero permeability in the y-direction.

Fundamental Solution for an Instantaneous Point
Force in the y-Direction

Consider an instantaneous point force with unit impulse act-
ing in the y-direction at the origin, at r = 0. The forcing fields
are

fi=8(x)6(0N8()6(1), fi=f=r"=0. (28)

Since the manner in which one obtains the solutions is similar
to that for the case of the point fluid source, we shall show only
the results:

_ (ao/ay) sgn (y)
P = _—4_——'
T

% [ s(1)|yl

2+ )7 Cf p’e“’“’e“’"‘Jn(pr)dp] , (29)

1]

o 6(n)r
P 81TG 2(1 T Uu)(rz o4 yZ)l’Z

— ase r paf—pme—plyljl(pr}dp:l , (3{])
0

5(t) y? )
3—-4v, +
— y"](rZ + y'Z)UZ ( L rZ + yz

+ ﬂfacf (1 — plyl)e“’z”e“"”fu(pr)dp] . (31)

0

1
“ = &G [2(1

where use has been made of the following formulae:

Ee ¢ im _
A" - . plyl
fm(p2+£2)= T

= 2 —iyé
f e %(1 = plyhe=#!,

w (p? + €)? )

.- 1l
J:) pe "\ Jy(prydp = g

f pe I (prydp = (33)

— "
5 (rZ + y2)3!2 !
Note again that the pore fluid pressure given by Eq. (29) is
discontinuous at y = 0.

Fundamental Solution for an Instantaneous Point
Force in the z-Direction

Here, we consider the point force in the z-direction. The
single principal axis of permeability falls on the y-axis, while
the point force acts in the z-direction. Therefore, there is no
axis of symmetry for the present problem, in contrast with the
former two cases. However, there is no substantial difference
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in the approach for obtaining the fundamental solutions, al-
though some more tedious manipulations are required.
In this case, the forcing fields are given by

fi=8(x)6(08(2)6(1), fi=fi=r"=0,

for which the solutions obtained are

(34)

= O.’nfa'g ind 6“)!‘
4?]_ (r2 + y2)3!2
—-c r ple ”z”e"”""'lu(pr)dp] , (35)
0
U, = —-1—— sin # cos 6 IO
* 8nG 2(1 — v )P+ Y22

- asc Jm pi(1 + plyi)-‘-""z”f""'Jz(pr)dp] ., (36)

0

u, = ——ysinf

5(t)r
871G 2(1 — »)(r* + yh)”?

_ ajcf p3e—p’3c!e—ﬂ|?|'f|(pr)dp] i (37)
o

! 5(t) L. )
=—— 3— 4y, + ——sin?f
i 817G [2(1_1)")(?_24_))2)”2( 14 r2+y25“1

T
+ Eaacf p*(1 +p|yl)e~r* Pl

]

X {Jo(pr) + cos 29J2(pr)}dp] , (38)

where we have used the following additional formulae:

ﬁ f_ cos 2pe " deh = —J, (), (39)
—ply! _[?+ )" - Iyl
J: € J2(pr)dp P2(r? + yz}uz ’ (40)
f pe Y L(prydp
0
2 [yl [y
=ﬁ|: _{r2+y2)I!2] _(r2+ yz}m' (41)

Fundamental solutions for an instantaneous point force acting
in the x-direction are easily obtained from Egqs. (35) through
(38) by a coordinate transformation. Explicit expressions for
these solutions are omitted here.

Reciprocal Theorem

Equations (1) through (7), supplemented by appropriate ini-
tial and boundary conditions, constitute a complete system of
equations for an elastically isotropic, homogeneous, fluid-satu-
rated, poroelastic solid with zero permeability in the y-direction.
Solutions of this linear system of equations satisfy a reciprocal
relation (Cleary, 1977; Kurashige and Clifton, 1992). The as-
sumption of zero permeability in one direction has no influence
on this relation. If we define the total fluid displacement Q; and
the total volume of supplied fluid R” by

g = 0Q:/0t, rF = oR"/éar, (42)
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the reciprocal theorem relates two independent ‘‘deformation’
fields {uf", Q!"} and {um Q} and associated ‘‘stress’’
fields {of’, p*"} and {0, p**'} resulting from the **forcing’’
fields {f,“’, R™} and { f{®, R™™} by

f [gf:ng}‘:nz; = p*mQ‘?“qz;]nidS
s
+I [fFoulto = Rew p*PdV
v
= f [o-;.‘nzsu}*m — p*aQi*w]n,dS
5

+ [ 1 route - REvwprolay, @)
v

where V and § are, respectively, the volume and the surface of
the body under consideration. In this relation, we have neglected
a body force acting on the pore fluid, because we do not need
it to obtain the integral equations that we require.

Application of Reciprocal Theorem

The reciprocal theorem can be used to obtain a pair of bound-
ary integral equations for the crack problem. To this end, con-
sider three solutions of Egs. (1) through (7). These solutions,
designated by (d), (f), and (s), are described below.

Solution (d) corresponds to the sudden appearance of a
closed dislocation loop that bounds a surface S, across which
the jump in displacement is given by the Burgers vector

by = uld — ul?, (44)
and the jump in the fluid displacement is
AQ; = Qi — Q17, (45)

where the subscripts + and — denote evaluation on the lower
and upper surfaces of S., which has unit normal n; = n;, =

—Rj-.
Solution (f) corresponds to the instantaneous appearance of
a point body force at position r = r’, described by
fFED = L[PS(DS(r —1')] = Pé(r — '),
PP, =1, (46)

where the asterisk and £ mean the Laplace transform as defined
by Eq. (13).

Solution (s) corresponds to the instantaneous appearance of
a point fluid volume source at r = r’. From the second equation
of (42), the instantancous point source is given by

SR*!-'(.r] = ‘“'é(r)é(r = ]")] = 5(]’ - l"}‘ (47]

Using (d) and (f), and (d) and (s) as two separate fields in
the reciprocal theorem (Eq. (43)), one obtains

Puf(r') = _f. [gFn(r, ' )bf(r)

— pFu(r, r)AQF(r)n (r)dS, (48)
pH(r'y = SI [oFw(r® r')bj(r)
— p¥o(r, r')AQF(r)In; (r)dS, (49)

where superscripts (d) have been omitted from the fields associ-
ated with the dislocation loop. Interchanging r and r’ and using
the fluid volume supply rate per unit fracture area, Ag,,, defined
by (see the first equation of (42))

Aq n =

~sAQ¥n,, (50)
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one obtains

uk(r) = ute(r) + ufw(r), (51)
pH(r) = pro(r) + p*u(r), (52)
where

uho(r) = ~f o', BF(rInldS',  (53)

Se
uko(r) = ——f Pio(r', D) AgH(x)dS!,  (54)
pFu(r) = sf o fa(r’, D)bF(r" )nlds’, (55)

e
pFa(r) = f Pio(r’, )Agk(r')ds’, (56)

Se
where n/ = n;(r’). In Eq. (50), the minus sign is required

because AQ,n; is fluid flow into the fracture, since n,, and n,
point into the fracture, while Ag, is fluid supply from the frac-
ture into the porous solid. In the last four equations, o, ,;(r’,
r) and p,,(r’, r) are the stresses and pore fluid pressures at
r' caused by the instantaneous point force acting at r in the x,,-
direction, while o) (r’, r) and p(r’, r) are the stresses and
pore fluid pressures at r' caused by the instantaneous point
fluid volume source at r. Superscripts (») and (g) indicate
contributions from the Burgers vector of the displacement dis-
continuity and from the fluid supply, respectively.

Dislocation Segment Solutions

To obtain the stresses and pressure resulting from an infini-
tesimal dislocation segment, as required for a numerical method
analogous to that used in the elastic and isotropic poroelastic
cases (Clifton and Abou-Sayed, 1979; Clifton and Wang,
1991), consider uw(r) and p*w(r) given by Eqs. (53) and
(55). Differentiating these equations with respect to x,, one
obtains

-
A~itr) ”"("} f b¥(r") aw,,,(r r)n'ds’, (58)
where use has been made of
f;_L oipifr,r) = — — o(r’,r) (8 =m,0). (59)
From equilibrium Eq. (5],-exccpt atr' =r,
b (r") % o}"my(r', rn; =0 (6=m,0). (60)

i
Use of this equation in Egs. (57) and (58) and application of
the Stokes theorem gives

Auku(r) ’ p '
ax.‘. = ejm § b?‘“ﬁwh(r ] r)dx:n (61)
a #*
—”a—(” = =564 Sﬁ b¥oly(r', tydx,  (62)
Xy

where ¢;,, is the permutation symbol and, temporarily, the Burg-
ers vectors b} are assumed to be spatially constant. These are
extensions of Mura’s formulae (Hirth and Rothe, 1982) to the
case of a fluid-saturated, poroelastic solid; they are valid for a
material which is both elastically and hydraulically anisotopic.
From Egs. (61), (62), and (1), the stresses and pressure gradi-
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ent caused by dislocations with Burgers vector b* along line
segment Ax), are as follows:

Ackm(r) + ab, Ap*»i(r)
=L

pams€isnl i O Gy (X', 1) Axy,  (63)

i Ap*m(r) =

ox;

—‘Sf_fmb?(??mij(l", r)Ax,, (64)

where L, are elastic moduli given by Eq. (1).

Equations (63) and (64 ) are the general dislocation segment
solutions. For applications in hydraulic fracturing, our interest
is in the stress Ac?’ and pore fluid pressure Ap'® on the plane
z = 0 caused by a dislocation segment on the plane z’ = 0. For
definiteness, consider a ‘‘horizontal’’ dislocation segment with
Burgers vector b” along the line segment Ax’ = Axj; later, a
“‘vertical”’ dislocation segment with Burgers vector b} along
the line segment Ay’ = — Ax; will be included to allow repre-
sentation of a general dislocation segment in the plane z' = 0.
See Fig. 1 for the sign convention. The position vectors in the
plane z = 0 will be denoted by R and R’, and the lengths of
the relative position vectors by

R=|R'-R|. (65)

With this notation, the inverse Laplace transforms of Egs. (63)
and (64) become

Aoﬁf”‘(R t) + aAp®*(R, 1)

= |r! - rl!

2 [ o = o ® Ry 1= 1)

T 1-2
- vog(R, R, 1 — 7)]dTAX", (66)
Aptb)ﬁ(R! ") = [bf(;) J‘a GIO]Q(R'} r, o)dZ
r a 0
+ f bi(T) 5." TR, 1, 1 — 'r)dsz:IAx (67)
o0 —=

Xe

A Plene Creok

on z'=0

Ay'

‘# gl:_‘ax " _-._?.-'_ZD_

Fig.1 Sign convention for dislocation segments Ax’ and Ay’ and crack
opening w{x', ¥'); Ax, in the extended Mura's formulae means the line
segment along the dislocation loop in the three-dimensional body,
whereas Ax’ and Ay’ are the line segments of "horizontal'’ and “verti-
cal” dislocations on the plane z' = 0, respectively, so that Ax’ = Ax,
and Ay’ = — Ax,; the minus sign in Eqgs. (88) Is necessary because the
Burgers vectors defined by Eq. (44) and the unit normals on the crack
faces given by m; = n,. = —n,. mean that the crack surfaces overlap due
to these Burgers vectors while w(x’, y') is the opening.
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For the vertical dislocation segment, one can obtain expressions
that are similar to Egs. (66) and (67) by replacing &, x, and y
by v, ¥, and x, respectively.

The crack opening w(x', y') can be related to the Burgers
vectors of the dislocation line segments (Clifton and Abou-
Sayed, 1979) by

_aw(x',y ) v b= — aw(x’, ¥') Ayt

b =
ay’ ! ox’

(68)

where the minus sign is necessary because the Burgers vectors
defined by Eq. (44) and the unit normals on the crack faces

given by n; = n;, = —n;- mean that the crack surfaces overlap
due to these Burgers vectors while w(x’, y') is the opening
(see Fig. 1).

Substituting the above relations into Egs. (66) and (67) for
the horizontal dislocation segments and the similar ones for the
vertical segments, combining the contributions from the both
segments, and then integrating the resulting equations over the
whole fracture area S, with area element dS' = Ax' Ay’ yields

c(R, 1) + ap®(R, 1)
_ dw(R', 7)
=Ty 2u.r f [ =)

.ﬁ

X g(z)zﬁ(R,r R! t = T)
— vom(R', R, t — 7)]d7dS’,

PP(R, 1) = f [a"”(R' ’)fa oou(R’, T, 0)dz
Sc a).'ﬁ

§ J" ow(R’, 7)
o r

(69)

X g—rfn TR’ Ty 1 — T]dsz]dS', (70)

where repeated subscripts § mean the summation over 5 = 1
and 2 (or x and y).

Point Force and Source Solutions

To obtain explicit expressions of ¢{?’(R, ) and p'*(R, 1)

from Egs. (69) and (70), one needs stress com%onenls O
Oy Tioygs Ty 8L 2 = 0, T (0)exs T (O)ey for arbitrary z, an
integrals |~ oo(r, t)dz, j_m O oy (T, t)dz. All the needed
stress components (see Appendix) can be obtained from the
fundamental solutions in the previous sections by easy but te-
dious manipulations. We show only the evaluation of the infinite
integrals:

J'" T oy(T, 1)dz

® sgn tx)_rpe'*”“e-"'f'fmplxl)dp, (1)
o

27

‘r, T 0y (T, 1)dz
_ UG

2mas

where use has been made of (Gradshteyn and Ryzhik, 1965)

Z
[, i ol P

(72)

pe e y(p] x| )dp,
[i]

1
= S e laDB=12) (73)
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The infinite integrals in Eqs. (71) and (72) for ¢ = 0, which
appear in Eq. (70), can be easily carried out. Using these evalu-
ations, Egs. (71) and (72), and the equations given in the
Appendix, one obtains

261
1 — 2v4x

xf ds»{ | — 2, (R’ —R")-V'w(R’, 1)
Se 2(] - u) Rﬂ

a(R, 1) + ap™(R, 1) =

i e
+ aij. dT f dppi\e—pzc(f—r}e_Pl}"_}'|
a 0

dw(R', T) L+ ply" =yl B
[73)( ((1 2) = B2 ol = x)

+ 2v sgn (x' — ) (plx' - x|))

y' -y

T Ao
|x" = x|

+ﬁ‘i‘£'—”(u = Fitalar < &

ay'

+ 2vsgn (v — »hlplx' - xl])] } , (74)

p(b}(R, I): _ Gaﬂ J‘ dSl'I:(R _R).?w(Rsf)
?-'ﬂ'ﬂz Se R
' % . )
cf dr J. dpple—p‘c(f—rle-pl_r —_rl.}
0 0
x 2XRLT) con (x— 1) 1i(pl ¥ - x1)
ax

6‘w(R’ T)

oy SBn (v = y)o(plx’ —xl)}]. (75)
y

Stress and Pressure Caused by Fluid Supply

Let us return to Eqgs. (54) and (56) and seek stresses and
pressure caused by the fluid volume supply through the crack
surfaces. Employing Eqs. (1) and (7) to (54), one obtains

* ]
Uj;(q](r) + ap*(q)(r) = EJ’ [M
5 S az

v ap?:u)(r,\ l')
1 - 2v ax!,

].-:.q,,(r'mt (76)

Pressures pg,, in the above equation and pq, in Eq. (56) are
the solutions for the instantaneously applied point force problem
and the instantaneously appearing fluid volume source problem,
given by Egs. (29), (35), and (18), respectively. Using these
solutions in Egs. (76) and (56), applying the inverse Laplace
transform to them, and carrying out one of the double integrals
after interchanging the order of integrations, one obtains for z
={

c@(R, 1) + ap (R, 1)

= Gao f ds’ J" .r pe—a%u—ne—ply‘—_vl
2o Jse o vao

% Jilplx’ — x[) dpAg,(R’, T)dT,
fod e 2l

(77)
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G 6y — )
@(R, 1) = f as' | X=X
PR, D) 8rlaa, Js. o e(t —7)

% e—(x'—x)’fdc[:—r}Aqn(RJ‘ T)d‘r. {78)

Integral Equations

Here, let us seek the integral equations for the case of the
zero permeability in the y-direction. Combine Egs. (74) and
(75) and Egs. (77) and (78), one obtains two coupled integral
equations that relate the normal traction o,,(R, ¢) and pore fluid
pressure p (R, ) at the crack surface to the crack opening w(R’,
7) and fluid supply rate per unit fracture area Ag,(R’, 7):

(R, §) = el J' {(R'—R)'V'W(R’, 0
dm(l — v,) Jse R?

it ]
+ f [H..{R' <R gy DR )
o0 ox
+ Ho(R'— R, t — T)QK(E_T)
ay’
+ H3(R' = R, t — 7)Agq,(R’, T):IdT}dS', (79)
GB(1 + VN)J. (R' = R)- V'W(R' 1)
R, =
PiR.1) om(l — v, {
+f I:H:n(R' -R,t- T)M
0 ax
+ H?.Z(Rr —_ R‘ t— T]M
ady’
+ Hu(R' = R, t — 7)Aqg,(R', 'r):ld'r}dS’, (80)
where
v, — S o
H,(R, 1) = T ple P gyl
1 +
x [% (ol x]) - sgn (x)J.(pIxI)]dp. (81)
Hi(R, 1) = Vu = pse—p’ae—plyl
| 0
X L—il Ji(p|x]) — sgn (yun(plxl)]dp. (82)

121 -v) 8(y) o= *tden
dr 1 -2 ¢t

[ perseerm Mdp] . (83)
" | x|

Hi;(R, 1) = ~§B(l + u.,)[

H;.(R.r)=—cj“p“e‘*’"'e'*’"'-sgn(xu.{plxl)dp. (84)
0

Hxn(R, 1) = —C‘rp%_pzue_pm'Sgn()')-fo{P|X|)dP, (85)
0
1 2B(1 + p)(1 —v)6(y) _.
Ha(R, 1) = — 80 p-vrsen (g6
R T 3w - o © (86)
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Equations (79) and (80) are the required integral equations,
For the nonporous case where v, = v and B = 0, Eq. (79)
reduces to the integral equation for an elastic solid (Clifton and
Abou-Sayed, 1979) and Eq. (80) vanishes.

Although evolutionary functions H;(R, 1) involve infinite
integrals with respect to p, except H» (R, ), their integrands
have no singularities and decay rapidly as p — o; thus, the
numerical evaluations of these integrals are not difficult.

Some insight into the relative magnitudes of the normal trac-
tions in Eq. (79) and the pressure in Eq. (80) can be obtained
by noting that the two factors on the right sides of Egs. (79)
and (80) satisfy the inequality

[G/dn(1l — v,)] = [GB(] + v )/6m(1 — v,)], (87)

since B = 1 and v, = 4. Equality holds only for B = 1 and v,
= 1. Therefore, if, for example, the applied normal traction on
the crack surface is stepwise (discontinuous) at + = 0, the
induced pore fluid pressure p(R, 0+) is less than the applied
traction for the case of compressible constituents. Further in-
sight into the behavior described by Eqs. (79) and (80) will be
obtained by solving Eq. (79) for hydraulic fracturing applica-
tions where Ag,(R’, 7) is regarded as prescribed.
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APPENDIX

After some tedious manipulations, the stress components nec-
essary to obtain explicit expressions of ¢{*’(R, t) and p"”(R,
t) from Egs. (69) and (70) are obtained as follows:
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11 1-2v, xzﬁ(f)
4r x | 201 = p,) (2* + y*)*7?

J(Z)b\'(xs Y. 0) = -

+ a;c.r Pl + ply }e"”z”e“"’"h(px)dp} . (Al)

0

i{ 1 - 2v, y6(t)
47 | 2(1 — ) (2% + yH)*?

a{z)zy(xo Y 0) =i

b [ pere *’”'XJ.mxndp}. (A2)
X

4]

1/ 1-2p, x6(1)
mxm(x. V. 0) = E 2(] — v ) (xz + v2):§.r2

— ac J“ p-’e'ﬂzﬂfe"p!yl
0
1+ ply
X {Ti'-ih(px) ~ 2J.(px1}dp) . (A3)

I — 2w, ya(1)
2(1 _ Vn) (xl + y2)3|f2

1
Tyie(X, ¥, 0) = T (
+ ase r pe ”2"’{2 sgn ()Jo(px)
0

- fa’l(px)}dp) . (Ad)

G ay xz
TelX, ¥y, 2) = — ga_xz .
2

X r ple e~ I(pVx? + 2%)dp, (AS5)
n

G ag_sgn(y)z
2 ap (2% + 2212

X r ple e oL I (pVx? + 22)dp.
0

J(O)zy(x} ¥, z) = -

(A6)

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C. W. Fan

Ph.D. Student.

Chyanbin Hwu'

Professor.

Punch Problems for an
Anisotropic Elastic Half-Plane

By combining Stroh’s formalism and the method of analytical continuation, several
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in this paper. First, we consider a set of rigid punches of arbitrary profiles indenting
into the surface of an anisotropic elastic half-plane with no slip occurring. Hlustra-
tions are presented for the normal and rotary indentation by a flat-ended punch. A
sliding punch with or without friction is then considered under the complete or

incomplete indentation condition.

1 Introduction

The problem of plane punch indentation has been investigated
for many years due to its broad application in engineering me-
chanics. This is one of the mixed boundary value problems and
may be considered as a particular contact problem because of
the line contact region. For the contact problems, most of the
analytical formula can be found in the books written by Galin
(1961), Gladwell (1980), and Johnson ( 1985). Muskhelishvili
(1954) and England (1971) provided solutions for several types
of punch problems in their books by using the method of analyti-
cal continuation. Gladwell and England (1977) and Gladwell
(1978) have investigated the use of certain orthogonal polyno-
mial expansions in the solutions of some mixed boundary value
problems such as crack and punch problems. Frictional punch
of flat-ended or wedge-shaped profile with crack initiating at
one end of the contact region has been studied by Hasebe et al.
(1989) and Okumura et al. (1990) who used a rational mapping
function and complex stress function to carry out the analysis.
Fabrikant (1986a, b) presented an integral equation based on
the reciprocal distance established by himself to solve the prob-
lem for a punch of arbitrary shape on an elastic half-space. A
similar case for an elliptical punch on an elastic half-space with
friction was analyzed by Shibuya et al. (1989) who used the
generalized Abel transform method.

The literature survey stated in the above paragraph is for the
cases of isotropic materials. For anisotropic materials, Willis ( 1966)
studied the Hertzian contact problem of anisotropic bodies by the
Fourier transform method. Chen (1969) investigated stresses fields
in anisotropic half-plane due to indentation and sliding by a friction-
less punch with smooth end face. Tsiang and Mandell (1985) em-
ployed a two-dimensional assumed stress hybrid finite element to
obtain the characteristic matrices of the bodies brought into contact.
Shield (1987) provided the variational principles for some elastic
problems involving smooth contact and crack problem. Jaffar and
Savage (1988) investigated the contact problem in which an elastic
strip is indented by a rigid punch of arbitrary shape by using a
numerical method proposed by Gladwell (1976). Klintworth and
Stronge (1990) used a potential function approach to construct
solutions for planar punch problems in an anisotropic half-plane
where there is no slip on the surface of a flat punch. In contrast to
homogeneous materials, a multilayered medium bounded to an elas-
tic half-space has also been examined by many researchers; for
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example, Lin et al. (1991) applied the complex potential functions
suggested by Green and Zema (1954) and Pan and Chou (1976)
to obtain the closed-form solution for a transversely isotropic half-
space subjected to various distribution of normal and tangential
contact stresses on its surface, and Kuo and Keer (1992) used the
Hankel transform to numerically solve the contact problem of a
layered transversely isotropic half-space.

Although there are many results obtained in the literature, to
the authors’ knowledge the analytical solutions for the general
punch problems, such as a problem of arbitrary number of
punches with arbitrary profiles, have not been found for the
general anisotropic elastic half-plane. If such a general solution
can be found analytically, the effects of material anisotropy and
punch profiles can be studied easily, which is helpful for the
physical applications to composite materials, road pavements,
geotechnical engineering and tribology, etc. In the present pa-
per, Stroh’s formalism (Stroh, 1958, 1962) which has been
proved to be elegant and powerful for anisotropic elasticity are
combined with the method of analytical continuation ( Muskhel-
ishvili, 1954) to solve the problems of indentation of plane
punches with arbitrary profiles into an anisotropic elastic half-
plane. Explicit solutions expressed in complex matrix notation
are obtained from the Hilbert problem of vector form ( Muskhel-
ishvili, 1954; Hwu, 1992). For the purpose of illustration, some
special cases are deduced from this general solution, such as
normal and rotary indentation by a flat-ended punch. Moreover,
in order to verify our results, the solutions are simplified to the
cases of isotropic materials and the results agree with those
given by Muskhelishvili (1954 ). The other case which has also
been studied in this paper is the problem of a sliding punch
with friction. An example of incomplete indentation by a
wedge-shaped punch under normal pressure is solved explicitly
and the condition to have complete indentation is discussed.

2 Basic Formulation for Anisotropic Elastic Half-
Plane

(a) Stroh’s Formalism and Analytical Continuation.
The basic equations for two-dimensional anisotropic elasticity
are the strain-displacement equations, the stress-strain laws, and
the equations of equilibrium. By applying the Stroh’s formalism
(Stroh, 1958, 1962), a general solution satisfying these equa-
tions may be expressed as

u=Af(z)+Af(z), ¢ =Bf(z) +Bf(z), (2.la)

where
A=[a a a], B=[b, b, by,
f(2) = [filz) Aflz) A@I, 2= x+ pay,
a=1,273 (21b)
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In the above equation, (x, y) is a fixed rectangular coordinate
system; u and ¢ represent, respectively, the displacements and
stress functions; p,, (8., b,), @ = 1, 2, 3, are the eigenvalues
and eigenvectors of the materials; and £(z) is a holomorphic
complex function vector to be determined by satisfying the
boundary condition of the problems considered. The superscript
T denotes the transpose and the overbar represents the conjugate
of a complex number. Note that (Suo, 1990; Hwu, 1993) in
the derivation throughout this paper, the argument of each com-
ponent function of f(z) is written as z = x + py without
referring to the associated eigenvalues p,. Once the solution
of f(z) is obtained for a given boundary value problem, a
replacement of z;, 23, or z; should be made for each component
function to calculate field quantities from (2.1).
The stresses o; are related to the stress function ¢ by

o =—¢ia, 02 = i (2.2a)
More generally, if t is the surface traction vector, then
t= i " (2.2b)
ds

where s is the arc length measured along the curved boundary
in the direction such that when one faces the direction of in-
creasing s, the material is located on the right-hand side.

Through the use of the analytical continuation method, a
Hilbert problem ( Muskhelishvili, 1954) can be formulated for
the half-plane problems. It will be assumed that the elastic body
occupies the lower half-plane y < 0 which is denoted by 5,
so that the region S~ is to the right if one moves in the positive
direction along the x-axis. The upper half-plane is denoted by
S* (Fig. 1).

Since ds is equal to dz on y = 0, the traction on the surface
y = 0 of the half-plane S~ can be represented as

t = lim di (Bf(z) + BE(D) ],

y=o~ G2

(2.3)
and the last term of (2.3) has the following relation:

d =——— d ———
lim — Bf(z) = lim —Bf(2).
lim 7B = lim = BT()
From the theory of functions of a complex variable, we know
that if f(z) is holomorphic for z € S, then f(Zz) is holomor-
phic for z € §*, and (d/dz) f(z2) = f£'(Z) where prime (')
denotes differentiation with respect to its argument. With this
in mind, we introduce @' (z) such that

Bf'(z), =z€S7,

0'(z) = [ D
~Bf'(z), z€S™,

(2.4)

Since f’(z) should be holomorphic in the elastic body S,
@' (z) is now holomorphic in §~ and S*, i.e., 8 (z) is sectionally
holomorphic in the whole plane except possibly on some seg-
ments of x-axis.

-

g

/H;’!/NN!?N/:‘/’HNH

“\S
b

Fig. 1 Notation of the half-plane
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By the above definition and the following notation,
lim @(z) = 8'(x"), lim @'(z) =8(x7),
y=o~ y=07

(2.3) can be rewritten as
t(x) = lim Bf'(z) + lim Bf '(2)
y=0” y=o*
=0'(x7)— 0(x").
In a similar way, the differentiation of displacement vector
u shown in (2.1a) for y — 0~ can be written as

iMu'(x) =0'(x") + MM ~'0'(x7), (2.6)
where M = —BA ™' = H™'(I + iS) = L(I — iS)™' is the

impedance matrix, and S, H, and L are three real fundamental
elasticity matrices (Ting, 1988).

(b) Half-Plane Far-Field Condition. Consider an arc ab
in the body S~ having the direction from a to b as its positive
direction (Fig. 1). By using (2.2b) and (2.1a),, the resultant
force q on the arc ab can be represented as

Il

(2.5)

b
q= f tds = [Bf(z) + Bf(z)]5. (2.7)
If we consider the case where the stresses and rotation tend
to zero as |z| tends to infinity, for large |z| the complex func-
tion vector f(z) has the form

f(z) = ((log z))q* + O(1), (2.8)

where the angular bracket ({( )) stands for the diagonal matrix
in which each component is varied according to the Greek index
a, q* is a complex constant vector to be determined by the
half-plane far-field condition. With the arc ab lying on the
boundary of the half-plane, i.e., x-axis, we let a = Rje™, b =
R,e'™. The resultant force q applied on the surface of the half-
plane can now be calculated by substituting (2.8) into (2.7).
The result is

q = (Bq* + Bq*) log% + mi(Bg* — Bq*).
'

Since R, R, tend to infinity independently, we must conclude

Bq* + Bq* =0, q = 7i(Bg* — Bq¥), (29)
and hence
a* = —Bq. (2.10)
2mi

By (2.4),(2.8), and (2.10), the half-plane far-field condition
for 8'(z) is

0'(z) = L_B<<l>>8"q, as |z] =2 ». (2.11)
2mi Za

If y = 07, the diagonal matrix ((1/z,)) approximates (1/x)I
since the second part of z,, p,y, disappears. Therefore

1
0'(x) = %;, as

|x| 2 and y—0". (2.12)

In summary, instead of finding f(z) in § *, we define a new
function 8'(z) which is sectionally holomorphic in the whole
plane except on some segments of the boundary, and by solving
(2.5) and/or (2.6) with the half-plane far-field condition de-
rived in (2.12), 8'(z), hence f(z), can be determined for the
half-plane problem.

One thing that should be emphasized here is the applicability

of f(z) in the full field of the half-plane. As we know, the
general solution shown in (2.1) requires that each component
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of the complex function vector f(z) be a holomorphic function
with argument z,, z;, and z,, respectively. This means that each
component of the new function 8'(z) introduced in (2.4) may
not be a function with only one argument z, or z; or z;. The
question now is that f(z) is determined after #'(z) is found
through a certain Hilbert problem and how can we know the
argument of @'(z) is z;, 2, or z; or any combination of them.
In solving the Hilbert problem, which is set through the method
of analytical continuation for a specific boundary, the full-field
solution may be expressed in terms of the complex variable z
= x + iy. In the case of half-plane problem, this specific bound-
ary is x-axis in which y = 0, hence the full-field solution may
be expressed in terms of z or z, (=x + puy), @ = 1, 2, 3,
depending on the requirement of f(z). Therefore, the most
appropriate way to get the solution, which is valid for the full
field including the boundary, is dropping the subscripts of z
during the derivation of 8'(z) and f(z). Once the solution of
f(z) is obtained from a certain boundary value problem, a
replacement of z,, z,, or z; should be made for each component
function to calculate the full-field solution for the deformations
and stresses. A translating technique for the above statement
has been introduced by Hwu (1993) as follows.
If an implicit solution is written as

f(z) = C{(g.(2)))q,

with the understanding that the subscript of z is dropped before
the matrix product and a replacement of z;, z;, or z; should be
made for each component function of f(z) after the multiplica-
tion of matrices, the explicit solution can be expressed as

(2.13a)

f(z) = X {(8:(2.)))ClLq,

(2.13b)
k=]
where
1 00 000 0 0 0O
L =]0 0 0], L=]1010|,L=]000
0 0 0 00 0 0 01
(2.13¢)

3 Punch Problems—A Type of Mixed Boundary
Value Problems

In the following sections, a variety of mixed boundary value
problems for the half-plane S~ will be considered. In all cases,
the analytical continuation method described in Section 2 will
be used to represent the stress and displacement fields in terms
of a single complex function vector which may be determined
by satisfying the Hilbert problem for a set of line intervals on
y=0.

In this section, we examine the case that a set of rigid punches
of given profiles are brought into contact with the surface of
the half-plane and are allowed to indent the surface in such a
way that the punches completely adhere to the half-plane on
initial contact and during the subsequent indentation no slip
occurs and the contact region does not change. Let us suppose
the contact region L is the union of a finite set of line segments
L= (ay, b)), k=1,2,...,n, where the ends of the segments
are encountered in the order a,, b,, a, b3, ..., a,, b, when
moving in the positive x-direction. For this case the displace-
ments of the surface of the half-plane are known at each point
of the contact region, then the boundary conditions are

u(x) = (u(x), ve(x) + ¢, 0)" = d(x), x€L,
(3.1)

where u,(x) and v, (x) are related to the profile of the kth punch
and ¢, is the relative depth of indentation. From (2.5) and (2.6),
the boundary conditions lead to the following Hilbert problem:

t(x) = (ny! Tyyy o—v)T = 0, x & L,

Journal of Applied Mechanics

(x)—0'(x")=0, xe&L,
O (x*)+ MM @' (x") = iMa'(x), x€L. (3.2)

The solution to this Hilbert problem of vector form is (Hwu,
1992)

0'(2) = - Xo(2) f L X § (1M’ (e
2 Lt—2

+ Xo(2)pa(2),

where p,(z) is an arbitrary polynomial vector with degree not
higher than n, and X,,(z) is the basic Plemelj function satisfying

(3.3a)

Xox)=Xs5(x), x &L,
Xdo(x) + MM 'X o(x)=0, xeL, (3.3b)
ie.,
Xo(z) = AI'(2), (3.3¢)
where
A =[N, Az, A,
I(2) = ([T (2 - @) "z - b)%).  (33d)

i=1
b, and A,, &« = 1, 2, 3 of (3.3d) are the eigenvalues and
eigenvectors of

(M~ + ¥R -)\ = 0. (3.4a)

The explicit solutions for the eigenvalues é are (see Appendix
A)

bo=—34+ie,, a=1273, (3.4b)
where
1 1+
£.=e=gln1_§, €& =—€ €=70
B =1[-3tr(8%)]", S=i(2AB" —1). (3.4c)

tr stands for the trace of matrix. Moreover, for normalizing
the eigenvector matrix A, the normalization proposed by Hwu
(1993) may be slightly changed to fit the present case, i.e.,

IR'(M™ + M M)A = 1. (3.4d)

To determine p,(z), we see that it is at most a polynomial
of degree n — 1

p(z)=do+diz+...+d2"",
and also from (2.12)

(3.5)

d = ——A"'q. (3.6)
27i
As to the remaining (n — 1) unknown coefficients of p,(z),
additional physical assumptions are required before the problem
is solved completely. Let us suppose that the resultant forces
applied to each punch are known. Then if q, is the known

resultant force vector on L;, we find from (2.4) and (2.7)

G = —f [0'(x") — 0" (x7)]dx, 3.7
L

for k = 1, 2, ..., n. Substituting (3.3a) into (3.7) yields n

equations for the determination of the n coefficient vectors d;.

It is apparent that one of these equations is redundant as (3.6)

ensures the overall equilibrium of the elastic body with
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q= Z Q.
k=1

However, these n equations completely determine the solu-
tion (3.3a).

Now the problem is solved in principle. For illustrating the
solutions derived above, some special cases will be investigated
as follows.

(a) Indentation by a Flat-Ended Punch. We first exam-
ine the case of indentation by a single punch with a flat-ended
profile which makes contact with §~ over the region | x| = a,
and the force q applied on the punch is given. Then

i'(x) =0, (3.8)
and from (3.3a), (3.3¢), and (3.6) we find
0'(z) = — AT(2)A 'q, (39)
2mi

where

-

t(x) =

ma? — x*y1 — ﬁ24

ro- ({75 (2 )

The stresses under the punch can then be determined by using
(2.5), (3.2),, and (3.8), i.e.,
t(x) = (I + MM Y (x7), |x| =a. (3.10)
Since the stresses t(x) are real, the result of the right-hand
side of (3.10) manipulated by some complex matrices should
be real. Therefore it is of interest to obtain the real form of the
solution, because it should provide a better understanding of
the physical behavior of the stress field under the punch. To
this end, the following equalities derived in a way similar to
that presented in the Hwu’s paper (1993) are used for the sim-
plification of (3.10), i.e.,

(I + MM " A = 2A{{e" ™= cosh (me,))), (3.11)
and
Alc)HA =1+ 1 Crgr  Gigr (319
B’ B

where ¢, = ¢, ¢; = @, ¢ = | and ¢, ¢, are real and imaginary
parts of ¢ which is an arbitrary complex number. Also, for y =
0 and | x| = a, it can be shown that

I(x") =<< A 1n“—“>>_
TR a—x

72 / Vol. 63, MARCH 1996

(3.13)

a-+x Sa . a+x
cos | € ln g — f——sin [ eln qy
a—x Sia a—x
S|2 . a+x a+ x ?
— —sin|eln g +cos|eln qy
Sa a-—x a—x

By the use of (3.9) and (3.11)—(3.13), Eq. (3.10) can be
written in real form as

1 1 - ¢p gz . €1
t(x) = - I+ S‘+—Sf]q, lx| = a,
) ma® —x"[ B B
(3.14)
where
) +
¢ + ic; = cosh (we)e ™™ In X ;
a—x

For orthotropic materials, (3.12) can be expressed as

Sa
; v == 0
|
A{{lec AT = B ., (3.15)
=y - CR 0
‘SZI
o0 0 1

where Sy,, S»; are the {12} and {21} components of 8. Then
t(x) becomes

|x| =a, (3.16)

4. )

where g,, g,, and g, are the components of the force vector q.

It should be noted that the general solutions shown in Section
2 are valid only for the nondegenerate materials, that is the
material eigenvalues p,, @ = 1, 2, 3, are distinct or three inde-
pendent material eigenvectors a,, b,, a = 1, 2, 3, can be found
when p, is repeated. Otherwise, the general solutions shown in
Section 2 should be modified (Ting, 1982). However, if the
final solutions do not contain any material eigenvalues p, or
eigenvectors A, B explicitly, and are composed of the real
foundamental elasticity matrices such as 8, H, L., and N; (Ting,
1988), they may be applied to any kind of anisotropic materials
including the degenerate materials such as the isotropic materi-
als. Following is the presentation for the reduction to isotropic
materials.

Consider that the special case of the isotropic body and the
force q applied on the punch is given as (0, —g,, 0)". Knowing
that for an isotropic body

o -1 0
g=2=21% o 9.
Kk+1 0 0 0

where « = 3 — 4v for plane-strain conditions and k = 3 — v/
1 + v for the generalized plane-stress condition, and v is the
Poisson’s ratio, we have by (3.4¢)

k— 1 1
= 5 = —In k.
A k+ 1 ¢ 27

(3.17)

From (3.16) and (3.17), the stresses under the punch can then
be found explicitly as
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i ; ( a+x)l
sin | e ln
a4 —x

B ‘[-‘; ZW;“Z—XZ l—cos(elna-"x) [

a—x

(3.18)

\ 0 J
which agree with those shown in Muskhelishvili (1954).

(b) A Flat-Ended Punch Tilted by a Couple. A second
problem illustrating the above theory is the case of a flat-ended
punch which adheres to the half-plane S~ and is then tilted by
the application of a couple m. Let us suppose the punch is of
width 2a and is tilted through a small angle & measured in the
counterclockwise direction. Then in (3.2)

0'(x)=¢ey 1 =ei;, |x| =aq, (3.19)

0
and from (3.3a)

0'(z) = 2 Xo(z) J' L [X5()] 'diMi,. (3.20)
2w cali— %

Note that the last term in (3.3a) vanishes since the resultant
forces are zero. In order to evaluate the above integral of vector
form, a special technique similar to that presented in the book
of England (1971) for line integrals of scalar form has been
developed in Appendix B. Applying that technique we find

0'(z) = ie{I — Xo(2){{z + 2iae)) A" } (X + MM ') 'Mis,.
(3.21)

This now enables us to calculate the stresses over the contact
region in terms of the angle of tilt . However, in an alternative
problem it may be assumed that the couple m acting on the
punch is given and it is required to find the corresponding angle
of tilt &. Hence it is necessary to evaluate the relation between
the applied couple m and the angle of tilt &.

For this purpose, we first calculate the stresses under the
punch, by (2.5), (3.2), (3.19), and (3.4d), we have

t(x) = — é (I + MM ")AI(x ){{z + 2iae,}) A"y,

|x| = a.

(3.22)

With this result, the couple m may now be calculated by

m =J~ xa,,dx = fa xiltdx,

in which the integral may be evaluated by a way similar to that
presented in Appendix B. The result is

(3.23)

s %a’-gi;A{(l + 4e2))A ;. (3.24)

For a given couple m, the angle of tilt & is determined by

2m
= e 325
&= ZaAIA((L + 42K 7L, (3:25)

Substituting this value of & into (3.22), one obtains the stresses
under the punch tilted by a given couple m.

Journal of Applied Mechanics

4 A Sliding Punch With Friction

Using the analytical continuation method in the preceding
sections, we may also solve the problems of a sliding punch
with or without friction. Since frictionless problems may be
covered by setting the friction coefficient to be zero in the
friction problems, in this section consideration will be limited
to the case where friction exists and the punch is on the verge
of equilibrium. The boundary conditions for this kind of prob-
lems may be expressed as

T(x) = tan AP(x)

}, onx €L, (4.1)
v(x) = g(x) + constant

T(x) = P(x) =0,

where P(x) and T(x) are, respectively, the absolute values of
pressure and tangential stress, A is the angle of limiting friction
for the punch and is a constant under the punch, and g(x) is a
given function for the profile of the punch. As before, if we
suppose the elastic body occupies the lower half-plane y < 0,
we have the relation 7(x) = o, if the punch is propelled from
left to right and T(x) = —o,, if the punch is propelled from
right to left. Moreover, to ensure contact P(x) = —o,, and the
first Eq. of (4.1) only holds provided o,, < 0, which must be
checked when the solution is obtained.

By using (2.5), the relation between the pressure P (= —a,,)
and the tangential stress T (= *o,,) shown in (4.1); may be
expressed as

onx &L, (4.2)

Gi(x")—01(x7)=F(tan N[O5(x") — 85(x7)], x€L, (4.3)

where 6, and 8, are, respectively, the first and second compo-
nents of #. Rearrangement gives

lim [61(z) * (tan A\)84(2)]

y-0"

= lim [8](z) * (tan \)B3(2)]. (4.4)

Yl

Thus the function #{(z) * (tan A)#4i(z) is holomorphic in the
whole plane including the point at infinity and it tends to zero
as |z| = o from (2.11), hence by Liouville's theorem one can
conclude that

f1(z) = (tan AN)Ai(z) = 0. (4.5)

The problem now reduces to determine a sectionally holomor-
phic scalar function 8,(z) (or #,(z)) satisfying the displacement
boundary condition of (4.1),. This condition can be expressed
in terms of #, by employing (2.6) and (4.5) into (4.1),, as

E [ '
03(x") + 2 04(x7) = f{g (x), (4.6)
where d = Tmi tan A + Mm%, m and m3; are the {12} and
{22} components of the matrix M ™', Equation (4.6) is a stan-
dard Hilbert problem, the solution to it is (Muskhelishvili,
1954)

G AKE) g'(r)
03(z) = 2rd . X (O —2) dt + X(z2)p.(2), (4.7)
where
X(z) = H (z—a) %z = b)),
k=1
1 d
E—Earg(—é), 0=6<1. (4.8)

p.(z) is an arbitrary polynomial with degree not higher than n
and arg stands for the argument of a complex number. Note
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Fig. 2 A wedge-shaped punch under normal pressure

that § is a real number and hence there are no oscillatory singu-
larities in the solution.

The problem now is solved in principle. For the purpose of
illustration, we examine an example of incomplete indentation
where the region of contact is unknown and has to be deter-
mined by assuming the stresses are bounded at the ends of the
contact region.

Consider a wedge-shaped punch under a total pressure g,
which induces the contact with half-plane S~ and the motion
of the punch is to the left as shown in Fig. 2. The profile of the
punch can be expressed as g(x) = ex where the origin is taken
so that the contact region is —a = x = g. Then from (4.8),
X(z) = (z+ a) %z — a)*" and from (4.7) we see that the
evaluation of #5(z) depends on the integral

5 dr
XMt -2)’
which has been evaluated by Muskhelishvili (1954 ) as
dt _ 2mid { 1
L XT()(t—2) d+d|[X(2)

— [z + (28 — 1)a]} :

(4.9)
To determine the polynomial p,(z), using the half-plane far-
field condition (2.12) one obtains

Pu(Z) = @ . (4.10)

2w
Substituting (4.9), (4.10) with g'(t) = & into (4.7), §5(z)
becomes

I

, _ e
6i(2) T d+d

{1 —[z+ (26 — DalX(2)) +-1.§9X(z).
2m

(4.11)
The pressure P(x) under the punch can now be calculated by
P(x) = —o,, = 04(x") — 05(x7)
ie

= J{x + (26 = Dal[X"(x) — X" (x)]

+ DX+ x) - X" ()], x| =a.
27
By using the bipolar coordinates z + a = Re*, z —a=
R,e™2, it will be seen that

e *ird

(a + x)(a —x)'"%"’

X*(x)=— | x| = a.

Hence the pressure P(x) can be simplified as

sin éd
m(a + x)(a — x)'°

P(x) =

2me
X {Qu = e [x + (26 — l)a]}. (4.12)
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The above expression is valid for general anisotropic half-plane.
It can be shown that for isotropic bodies

ik — 1) 1+«
m;k2=(—l m;;: ]
4u 4u

(4.13)

where g4 is the shear modulus. By using these values for the
calculation of 4 and §, we have

d=L{1+K+f(K-l)taIl?\].
4u .

1+ Kem]

1
b=1—-y,y=—arg—
NV ox g{ K+ et

and Eq. (4.12) can be proved to agree with that given in (En-
gland, 1971). If the motion of the punch is to the right, the
same expression as (4.12) will be obtained except that

d=i{l+x—i(x-—lJ tan N}, 6=17.
4u

As stated in the beginning of this section, to have a complete
indentation, the applied force g, should be large enough that
the end-face of the punch touches the half-plane, i.e., the pres-
sure P(x) should be positive under the punch. By letting P(*a)
> 0, we may find the minimum requirement for the applied
force g, to reach complete indentation;

2417563
BT

(4.14)

However, if ¢, is not sufficiently large to satisfy the above
inequality, a state of incomplete indentation will result as illus-
trated in Fig. 2. In this case the length of the contact region
will depend on g, and is determined from the condition that the
stress is bounded at the point x = a where the punch and the
half-plane meet smoothly. For a bounded stress at x = a, from
(4.12)

d+d
4mred

4o, (4.15)

a =
and hence

i N\
P(x) = 2851—“176 (3___'1) < (4.16)

d+d \a+x

5 Conclusions

By applying Stroh’s formalism and the method of analytical
continuation, a general solution for the problems of punch in-
dentation into an anisotropic elastic half-plane is derived in this
paper. The generality of the present solution is shown as fol-
lows. (1) The half-plane is a general anisotropic medium.
(2) The number of rigid punches indenting into the surface
is arbitrary. (3) The location of each punch on the surface is
arbitrary. (4) The profile of each punch is arbitrary but must
be continuous, and in the case of sliding friction, the solution
must be checked to ensure that the contact pressure is greater
than zero. (5) The punches may completely adhere to the
half-plane, or slide with or without friction. (6) The cases of
normal, tangential, and rotary indentation are all included. For
the purpose of verification and illustration, some special cases
are deduced from this general solution, such as normal and
rotary indentation by a flat-ended punch into anisotropic or
isotropic half-plane. The results show that our solutions are
simple, general, and exact.
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Appendix A
Consider the eigenproblem

(M~ + "M A =0, (A1)
where M is the impedence matrix defined as M = —iBA™'.
With the identities shown by Ting (1988), we have

M™'=iAB~' = (I —iS)L™', (A2)

where L, S are real matrices composed of elasticity constants.
Moreover, it can be shown that SL " is antisymmetric and L ™!
is symmetric and positive definite.

Substituting (A2) into (A1) and for a nontrivial solution of
A, we obtain

[I(1 — e*®)SL™" + i(1 + LY =0. (A3)

Since L' is positive definite, the determinant is nonzero if we
set § = 0. Hence (1 — ¢*®) # 0, and (A3) may be rewritten
as

[SL~' + iBL7Y = 0, (A4)
where
1 + eZm'é
= | — g2rid’

Rearranging the above relation, we have

1-8

1+ 4

It can be shown that if § is a root, so is § + n where n is an
integer. If only —1 < Re(6) = 0 are considered (Ting, 1986),
we have

e!ﬂ'l’é -

The theorem proved by Ting (1986 ) states the following. Let
B be a root of the 3 X 3 determinant

W + iGD|| = 0,

where D is a real, symmetric, and positive definite matrix, while
W is a real antisymmetric matrix, then

—3tr(WD )2 > 0,
and the three roots are all real given by
B=0, B==*[—tr(WD )2}
By the above theorem, and replacing W, D by SL™', L',

we have the solution for the eigenproblem (Al). The results
are

8o = —5 + i€a, a@=1,2,3, (A5)
where
e|=f=-21—ﬁ_ln:ig, € =—¢ ¢€=0,
1 12
B = [— > rr(Sz)] . (A6)
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Fig. 3 A lacet integral contour

Appendix B

Consider the integral

< L + -
iz) = f — [X 5 ()] 'g(t)dt, (B1)
Pt Gl
where L is the union of a finite number of arcs L,, L, ..., L,
and X,(z) is the Plemelj function satisfying the relation
X))+ MM 'X5(1)=0. (B2)

Suppose that g(¢) is a polynomial, a situation which often oc-
curs in practice. Then the integral along each L, may be ex-
pressed in terms of an integral along a lacet C; surrounding L,
as shown in Fig. 3, and assume that z remains outside these
lacets.

The contour integral around the lacet C, may be represented

as
1
f L x,01g@dg
el -z

- Lx .;(r)r'g(:)dr—f L X1 g
t—z Lt—2

Iy

+ lim L X(O1'8(0)dL

0 ditai=p § — 2

. 1
+ lim — [Xo(§)1'g(8)dt.
o dignl=p £ — 2
It may be shown that the last two integrals above tend to zero
as p — 0. Hence from (B2)

f L XD g ()L
al—7z

= ﬁ [X (17X + MM YHg(nar,
L=

then the integral j(z) may be expressed in the form

76 / Vol. 63, MARCH 1996

1 _
i) = fca [Xo(O17' (X + MM ™) “'g()d, (B3)

where C is the union of the lacets C,, Cs, ..., s
Replacing C by a counterclockwise circle contour C.. at a
large distance R, we can obtain that

§(2) = 2miS —L é[xo(C)]_](l + MM ) 'g(Q)d,

(B4)

where S is the sum of residues of the poles of the integrand in
(B3) lying between C and C... The second term has the form

2w il

lim K{:"_—Z [Xo(Re®)]™1(I + MM ~")"'g(Re™)id8,

Rve W0
(B5)

where R is the radius of the contour C... It can be shown that
only terms independent of Re” can contribute to the above
integral. Then with a given function g(t), the integral j(z) can
be explicitly evaluated from (B4) and (BS5).

For example, consider an integral along a single line L =
(—a, a) and let g(r) = g, where g is a given constant vector.
The sum of the residues is

§=[Xo(2)]7'(1+ MM ") 'g. (B6)

To calculate the integral shown in (BS), by (3.3d) we express
r'2'(C) for large |£| as

L€ = (€ +a)*=({ —a)™

=C+2iae.,+0(é). a=1223

Hence (B5) becomes

rig
limf (1+iﬂ+.‘.)
R—o Jo Re’

X ((Re® + 2iae, + ...))id0A '(1 + MM ') 'g
= 2mi{(z + 2iae))A '(I + MM ") "'g. (B7)

From (B4), (B6), and (B7) we obtain the final result of j(z)
as

J(2) = 2mi{[Xo(2)] ' — ({2 + 2ige))A '}
X (I+ MM ") 'g. (B8)
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Cylinders, Part lll: Experiments

This paper describes an experimental investigation of a type of foldable cylindrical
structure, first presented in two earlier papers. Three cylinders of this type were
designed and manufactured, and were then tested to find the force required to fold
them. The results from these tests show some discrepancies with an earlier computa-
tional simulation, which was based on a pin-jointed truss model of the cylinders.

Possible explanations for these discrepancies are explored, and are then verified by
new simulations using computational models that include the effect of hinge stiffness,
and the effect of geometric imperfections.

1 Introduction

Foldable structures are used for a variety of applications,
ranging from umbrellas to solar arrays for spacecraft. This paper
describes an experimental investigation of a type of foldable
cylindrical structure, first presented in two earlier papers (Guest
and Pellegrino, 1994a, b). These structures are formed by divid-
ing up the surface of a cylinder into a series of identical trian-
gles, the sides of which approximate to helices. The side-lengths
of the triangles are chosen such that (i) the cylinder is bi-stable,
having two strain-free configurations, one extended and one
folded; (ii) the strains induced by the folding process are suffi-
ciently small that the cylinder deforms purely elastically.

The first paper in this series (Guest and Pellegrino, 1994a),
henceforth referred to as Part I, introduced this type of foldable
cylinders, and described the four topological and geometric pa-
rameters that are required to identify a particular cylinder. The
parameters are the number of starts of two of the helices on the
surface of the cylinders, denoted by the letters ¢ and &, and the
ratios between the lengths of two sides of a triangle and the
third. With the symbols introduced in Figs. 2 and 3 of Part I,
the four parameters are m, n, l,/l,, and [./,, respectively. By
considering a simplified, uniform folding mode, Part 1 obtained
estimates of the strains induced by folding cylinders with m =
l,n =7 and m = 2, n = 7, for a wide range of ratios ,/1,
and [./1,.

The second paper in this series (Guest and Pellegrino,
1994b), henceforth referred to as Part II, looked in more detail
at the folding process of three particular cylinders, and described
a computer simulation of that process. The simulation showed
that the folding process is broadly similar in the three cylinders
and consists of two distinct phases. During the first phase, the
cylinder forms a strained shape-transition region under a stead-
ily increasing folding force. When this force reaches a peak and
starts to decrease, the second phase begins. Now, the shape
transition region moves along the cylinder under a small force,
leaving behind a fully folded part of the cylinder. This type of
behavior is observed in the collapse of many structures, and is
generally known as a propagating instability (Kyriakides,
1994). However, while propagating instabilities are usually de-
structive, for these cylinders this behavior is highly desirable.

This paper describes three foldable cylinders that have been
designed, manufactured, and tested. The first two cylinders were

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
oF MecHANICAL ENGINEERS for publication in the ASME JOURNAL OF AFPLIED
MecHANICS .

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.,

Manuscript received by the ASME Applied Mechanics Division, Aug. 1, 1994;
final revision, Dec. 23, 1994, Associate Technical Editor: S. Kyriakides.

Journal of Applied Mechanics

designed simply to validate the theoretical work in the previous
papers. The third cylinder was aimed at a possible application, to
produce a collapsible fuel tank for Hydrazine, a highly corrosive
rocket fuel. As fuel is used, the tank would reduce its volume,
thus preventing sloshing of the remaining fuel, and also reduc-
ing the amount of fuel which collects away from the supply
pipe, and hence is left unused. A summary of the geometry of
the cylinders that were manufactured is given in Table |. The
observed experimental behavior shows complexities that were
not predicted in Part II. However, a re-analysis of the folding
process which allows for two effects that had been neglected
previously, hinge stiffness along the connections between pan-
els, and the presence of manufacturing imperfections, predicts
the kind of behavior that is observed in practice.

The layout of the paper is as follows. Section 2 describes
the manufacture and compression testing of the models, and
identifies the key discrepancies between the behavior predicted
by the computer simulations in Part IT and the actual behavior
of the models. Possible explanations for these discrepancies are
discussed in Section 3, and these explanations are investigated
in detail, in Section 4, by modifying the computer model and
producing new simulations. Section 5 discusses these simula-
tions, and concludes the paper.

2 Experiments

Irathane and Aluminium-Alloy Cylinders. Two of the
cylinders described in Part [ have been made from sheets of
0.9 mm thick aluminium alloy plate, coated with a 0.7 mm
thick layer of Irathane on both sides (Irathane is a flexible
polyurethane). Hinges were made by forming a series of
straight, parallel grooves, using a milling machine. Both one
layer of the Irathane and the Al-alloy were removed, thus leav-
ing only one layer of Irathane to form the hinge. Each sheet
was milled to the correct fold pattern. The final cylinders were
formed by joining together opposite edges of the sheets with
small plates. The bases of both cylinders were fully restrained
before testing.

Each cylinder was tested using a Howden testing machine in
a displacement controlled mode. The top of the cylinder was
loaded using a plate attached to the testing machine through a
central ball joint, thus allowing the plate to change its orienta-
tion during folding. The total compressive load on the cylinder
was obtained by adding the weight of the loading plate to the
force measured by a load cell, at the top of the testing machine.
Once the cylinder had been fully compressed the test was re-
versed, as further compression would have damaged the connec-
tion between the cylinder and the base plate.

The results of the compression test on cylinder no. 1 are
shown in Fig. 1(a). This plot of force during folding shows a
clear periodicity, where the period is approximately 20 mm.
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Table 1 Geometric parameters

m n I, (mm) [,(mm) [ (mm)
Irathane and Al-alloy
cylinder no. 1 1 8 50.0 50.0 90.1
Irathane and Al-alloy
cylinder no. 2 1 7 50.0 50.0 86.6
Cu-Be and steel cylinder 1 7 124.8 104.7 205.3

For this cylinder, the change in the relative height coordinates
of two nodes on the g-helix is 2.7 mm between the extended
and folded configuration, while this difference is 22 mm for
two nodes on the b-helix. Hence, it can be concluded that the
basic periodicity of the force plot has a wavelength correspond-
ing to the relative height of successive nodes on the b-helix.

The cylinder formed one transition zone at the top of the
cylinder, which moved down the cylinder as the test proceeded.
As displacement 6 was increased, no triangles would fold while
the force was increasing, but several triangles folded in quick
succession while the force was decreasing.

The results of the compression test on cylinder no. 2 are
shown in Fig. 1(&). For this case the change in the relative
height coordinates of two successive nodes between the ex-
tended and folded configuration is 4.0 mm along the a-helix,
and 28 mm on the b-helix. The behavior of cylinder no. 2 was
similar to the previous cylinder, except that in this case there
is no consistent periodicity in the results.

Cu-Be and Steel Cylinder. The third cylinder was manu-
factured using a copper beryllium alloy (Cu-Be) as a hinge
material. Cu-Be was used because, when correctly heat-treated,
it has a large elastic strain range and hence a thin strip of Cu-
Be can be elastically bent around a small radius. The cylinder
was made from a flat, 0.1 mm thick sheet of Cu-Be. A series
of stiff triangular panels were formed by sandwiching the Cu-
Be between triangles of 0.5 mm thick steel plate. These plates

2 i 1 2 .
o 40 80 120

5 imm)
Fig. 1(a)
60

40
RN}

) L | | ! 1

&(mm)

Fig. 1(b)

Fig. 1 Force required to compress the Irathane and Al-alloy cylinders:
(a) Cylinder no. 1, (b) Cylinder no. 2
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Fig. 2 Folding of the Cu-Be and steel cylinder: initial state, 5 = 100
mm; & = 400 mm; & = 630 mm, fully folded

were spot welded in place. Then, the two edges of the sheet
were joined together, to form the cylinder, Note that steel plates
could not be used for a Hydrazine tank, as the steel and the
Hydrazine would react. A different stiffening material would
have to be used.

The steel triangles were placed 6 mm apart on the Cu-Be
sheet to allow an elastic hinge to form. Also, the corners of the
steel plates were rounded, to increase the width of the unre-
strained Cu-Be sheet near the intersection of hinge lines. One
problem with this method of construction is the detail of folds
around a node. Inevitably there is an incompatibility where
concave and convex folds meet. At this point a crease forms in
the Cu-Be sheet, causing plastic deformation. Thus the aim of
purely elastic folding was not entirely achieved in this design.
The base of the cylinder was fully fixed, by casting it into an
epoxy base.

Four compression tests were performed, following the same
procedure as for the Irathane and Al-alloy cylinders. Figure 2
shows four photographs taken during the first test. It can be
seen from the first photograph that the cylinder had to be ini-
tially slightly folded to fit in the testing machine. A plot of the
force required to fold the cylinder during this test, Fig. 3(a),
shows a period of approximately 60 mm. The change in relative
height coordinates of two successive nodes between the ex-
tended and the folded configuration is 9 mm along the a-helix,
and 64 mm along the b-helix, and so clearly the periodicity of
the plot corresponds to the folding of successive nodes on the
b-helix.

One important effect shown in Fig. 2 is the formation of a
second transition zone close to the base of the cylinder. This
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Fig. 3 Force required to compress the Cu-Be and steel cylinder:
(a) first test, (b) second, third, and fourth tests

occurred when the cylinder had been compressed by 125 mm.
For the rest of the test it was this transition zone which moved
up through the cylinder. A likely reason for the formation of
this second transition zone is the weight of the cylinder, which
led to a compressive force approximately 55 N greater in the
second transition zone than in the top transition zone.

As for the previous tests, during this test no new triangles
folded while the force was rising, but many triangles folded in
quick succession as the force dropped.

When fully folded, the cylinder had a height of 242 mm,
compared with an original height of 872 mm. 150 mm of the
compressed height was accounted for by the part of the cylinder
fixed open at the base.

When the test was reversed, and the top plate moved up, the
cylinder showed some spring-back, and regained a height of
540 mm. Closer inspection of the Cu-Be hinges, showed that
the creases around the nodes had moved closer together by 1-
2 mm. Stretching the cylinder caused these creases to move
back towards their original position, and the cylinder to regain
an extended configuration. The creases did not, however, return
completely to their original position, and the cylinder only re-
gained a height of 763 mm.

Three further tests were performed on this cylinder. After
each test the cylinder was pulled back towards its original con-
figuration. The force required to fold the cylinder in each case
is plotted in Fig. 3(b). In each test the cylinder folded by
forming a transition zone close to the base of the cylinder,
which then moved up through the cylinder as the test proceeded.
The force plotted is that in the transition zone, and so the origi-
nal data has been modified to account for the steadily decreasing
weight of the portion of the cylinder above the transition zone.
Again during the test a number of triangles would fold each
time the force decreased.

For each of the further three tests performed the change in
the relative height coordinates of two successive nodes between

Journal of Applied Mechanics

the extended and folded configuration is 7 mm along the a-
helix, and 45 mm on the b-helix. Note that these values are
smaller than for the original test, as the plastic deformation
around the nodes has reduced the height of the cylinder. Again,
the basic periodicity of these force plots has a wavelength corre-
sponding to relative height of successive nodes on the b-helix.

3 Discussion of Experiments

All the cylinders tested initially formed a transition zone,
which then moved through the cylinder. Generally the zone
moved from the top down, but for the Cu-Be and steel cylinder
it moved from the bottom up, due to the self-weight of the
cylinder, The shapes of the corresponding force plots also have
a number of similarities. They all show a periodic variation of
the force. In two of the cylinders, the Cu-Be and steel cylinder,
and the Irathane and Al-alloy cylinder no. 1, the wavelength of
this variation corresponds to the folding of successive nodes
along the b-helix, i.e., of n pairs of triangles on the a-helix. In
the Trathane and Al-alloy cylinder no. 2 the period of variation
shows no obvious pattern.

Comparing these results with the computer simulation in Part
11, a number of similarities can be seen. In both the simulation
and the tests the modes of deformation of the cylinder are
similar. A transition zone forms, which then moves through the
cylinder. Comparing the plots of force from the computations
with the experimental results, both cases show the force varying
around a constant value as the transition zone moves through
the cylinder.

There are, however, also a number of discrepancies. One is
that the force in the experimental results does not vary about
zero, but about an average compressive force. This implies that
some strain energy is being stored in the cylinder during the
folding process. Another discrepancy is that the actual force
variation does not correspond to the height difference between
successive nodes on the g-helix. Indeed, for two of the cylinders
tested it corresponded to the height difference between succes-
sive nodes on the b-helix. A third discrepancy is the absence
in the experimental results of any sign of an initial force peak,
as the transition zone forms.

There is a fairly obvious explanation for the first discrepancy.
The computer model in Part II assumed momentless hinges
between the triangles. With this model, stretching energy builds
up in the transition zone, at the start of the folding process
and—once a certain energy level has been reached—the transi-
tion zone moves along the cylinder while the energy stored in
the system remains constant. There is no bending energy any-
where in the cylinder. In reality, some energy must be put into
the hinges to cause them to fold. Thus, as the transition zone
moves down the cylinder, energy must be put into the cylinder
to fold more hinges, and so the average compressive force must
be greater than zero. It will be seen later that the effect of hinge
stiffness explains the third discrepancy, the absence of an initial
force peak.

To explain the second discrepancy, it should be noted that
the most critical part of the manufacturing technique described
in the Section 2 is the final joining process between the two
edges of the sheet containing all the triangles. It is difficult to
keep the two edges perfectly aligned during this process, and
hence it is reasonable to expect that only one of the b-helices
contains a series of geometric imperfections. Thus, if these
imperfections are sufficiently large, the periodicity of the force
plot would correspond to the folding of complete turns of the
a-helix, not to the folding of successive pairs of triangles. The
more random periodicity shown by the Irathane and Al-alloy
cylinder no. 2 could be due to more distributed errors, as this
was an early attempt at making a cylinder, and it had already
been damaged by a number of demonstrations prior to the test.
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4 Computer Modeling

In order to validate the reasons suggested in the previous
section for the discrepancies between experimental results and
those predicted by the computer simulation, two changes were
made to the computer model described in Part II. The first
change was to modify the model so that it no longer assumed
momentless hinges between the triangles, and the second was
to modify the model to simulate the effect of a final misalign-
ment during the manufacture of a cylinder.

Elastic Hinges. The aim of this section is to describe how
elastic hinges were incorporated into the computational model
described in Part II. The original model was a pin-jointed truss,
with bars of equal cross section along the edges of the triangles.
This model was analyzed using the Force Method of structural
analysis, and hence by setting up and solving appropriate sys-
tems of equilibrium and compatibility equations. To include in
this model a series of elastic hinges that oppose relative rotations
between adjacent triangles, the equilibrium, compatibility and
flexibility matrices for a general hinge element are needed. In
analogy with Section 2 of Part II, these matrices are derived
directly in the global coordinate system. The stiffness matrix
of a similar element was derived in Chapter 5 of Phaal (1990),
using a transformation from a local coordinate system.

Consider a typical elastic hinge, Fig. 4, between two triangles.
The triangle P,P.P;, Fig. 4(a), has unit normal

_ (B = P) X (P —Py)

u= (1)
[[(P, — Py) X (P; ~ Py)|l
and triangle P,P;Pg, Fig. 4(b), has unit normal
Ps—P,) X (Ps— P
_ (s —Py) X (B~ Py) 4y

[(Ps — Py) X (Ps — Ps)|

Let M be the moment exerted by the hinge, positive in the
direction shown in Fig. 4(a, b). Equilibrium of each triangle
is maintained by three corner forces, normal to the triangle,
Any in-plane force component exerts no in-plane moment, and
hence makes no contribution to the equilibrium equations that
are derived below. These in-plane forces are carried by the
original truss model.

Consider the triangle P,P,P5, shown in Fig. 4(a). The magni-
tude of the corner forces, ry, r;, r3, can be found by considering
moment equilibrium along the three sides of the triangle.

Taking moments initially about P\P,,

_P]

P,
(P —P'_;)X!'_ll'(_—) +M =0, (3)
’ AP, - Py
rearranging the scalar triple product gives
3
(P, =P X (P —P)| ———— |+ M=0. (4
u-(P; 1) X (Ps 2)(||P2—Pl|l) (4)

As u is a unit vector, and is parallel to (P, — P;) X (P — P,),
this can be written

Fig. 4 Elastic hinge element
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LE]
P, - P) X (P, - P —— |+ M=0 5
||( ] 1) (Ps 2)”(”[’2 — P|||) - (5)
and so
[Py — Py
r3= - (6)
PP — Py X (Py — Pyl
Similarly, taking moments about P,P; gives
P,—P,
P-P)Xru|—
s <Rkt (nm - Pzn)
PE_P|) (Pg_Pz)
+ . M=0 (7)
(IIPz - P [Py — Pyl
which can be reduced to
P (Pz_PJ)'(Pz—Pz) (8)

- M.
[[(P; — Py) X (P, — Py} [|[(P; — P

Also, taking moments about P;P, gives
Pl L5 P'{
(P, — P)) x ru*(-—-—'-)
RN I O

P, - P, P - P, )
§ - M=0 (9
(uPz . P.||) (uP, -y 3

which can be reduced to

_ (P, — P)- (P, — Py)
(P, — P3) X (P, = P [I(P: — P

M. (10)

=

Similar relationships can be found for triangle P,PsP;

_ IPs — Pyl
[I(Ps — Py) X (Ps — Psf)
(P:i = Py)-(Ps — Ps)
o= - M (12
T T =P x (P, - PR — B (1P
B (Ps — Py)- (P, — Py)
[[(Py — Pg) X (Ps — P [|(Ps — Py)l

re = M (11)

rs = M. (13)

The equilibrium matrix for the general hinge element of Fig.
4(c) relates the moment M to all of the external forces in
equilibrium with it. At P, = Ps, the total force is rju + rsv,
and similarly, at P, = Py, the total force is r,u + riv. At Py
and Py the total forces are rsu and rev, respectively. Hence the
16 X 1 equilibrium matrix, A,, for this element is defined by
the following system of equilibrium equations. For brevity, the
notation P; = P, — P; has been adopted.

_( P Py )u_( Py Py )V
P25 < Py IPy3)] [Pes X P |[Pys]|
. ( Py Py ) ( Pys Psg )
i 1= ¥ ot v

[P X Pyl [P IPss > P [P i - 2

[M]z izu. Ry (14)
() o
P12 3¢ Pyl

(el ).
P25 X Pl

The transpose of A, is the compatibility matrix of the hinge
element, relating the rotation of the hinge to the displacement
of the nodes P, — Py. It is assumed that the hinge element is
unstrained; i.e., the hinge rotation is zero, when the element is
flat, to simulate the behavior of a cylinder made from a flat
sheet.
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The flexibility matrix relates M to the hinge rotation. It is
defined in terms of the axial flexibility of the bars in the truss
model, the hinge length, and a dimensionless constant f, which
can be varied to simulate different hinge properties. For the
element of Fig. 4

- f
Fe= [AE B, — P.u] ' b

The hinge elements for the cylinder are incorporated into
the truss model to give enlarged equilibrium, compatibility and
flexibility matrices for the entire structure. For a cylinder with
N nodes and B bars, there are now H hinge elements. Thus the
vectors of generalized stresses and strains include, as well as
all the terms defined in Part I1, H additional components. Apart
from these changes, the simulation algorithm is unchanged from
Part 11

One of the cylinders analyzed in Part Il has been reanalysed
incorporating hinge elements along all internal bars. It has pa-
rameters m = 1, n =7, /I, = 1 and [./l, = V3. The particular
model that has been analyzed has N = 36 nodes, B = 86 bars
and H = 76 hinge elements. Each simulation of the folding
process consists of approximately 300 compression steps of
size 0.01l,. Simulations were performed using different
values of the flexibility factor, f. The results for
f=1x10% f=1x%10"and f= 1 X 10" are presented in
Fig. 5. Note that decreasing f corresponds to making the hinges
stiffer,

Figure 5(a) shows the force R required to compress the
cylinder for the three different values of hinge stiffness. Each
of the plots shows the force rising at the end, which is due to
the interaction between the transition zone and the fully fixed
base.

T of
E L
~ ©6&F
=4
= L N\ f=1x10° /
o —_ R T
f=1x10°
L 1 1 1 1 1
0 1 2 3
8/1,
Fig. 5(a)
8_
a_
-
(=}
T AP
o
2=
oF
1 1 1 1 1
0 10 20 30
bar no.
Fig. 5(b)

Fig. 5 Folding of cylinders with m = 1, n =7, L/l, = 1, L/I, = v'S:
(a) force required to compress cylinders with different hinge flexibilities;
{b) distribution of €., when § = 1.91/, and f = 1 x 10*. Bars take the
number of their bottom node, and nodes are numbered going up on the
a-helix, Discrete values have been joined, for legibility.

Journal of Applied Mechanics

When f= 1 x 10° the force plot appears very similar to the
results presented in Part II. The stiffness of the hinge has very
little effect in this case.

When f=1 X 10° a larger peak force is required to form the
transition zone at the top of the cylinder, and an approximately
constant, nonzero force is required to move this zone down the
cylinder.

When /= | x 10*, some clear changes in behaviour become
evident, as the formation of the transition zone is now a two-
stage process. During the first stage, the force R reaches a peak
as the transition zone is initially formed at the top of the cylin-
der. This zone includes some bars which are also elastic hinges,
and some which are not. The second stage occurs as this transi-
tion zone starts moving down the cylinder. R increases as the
number of hinges in the transition zone increases. The transition
zone is finally fully formed when all the bars within the zone
are also elastic hinges. After this, there is a steady-state part of
the plot as the fully formed transition zone moves down the
cylinder. The steady-state part for this particular simulation is
rather short, as the cylinder that is being simulated is small,
and the effect of the base quickly becomes important. Note that
there is an average compressive force in the cylinder during the
steady-state phase, as energy must now be put into the cylinder
to fold the hinges. Also note that the force required to form the
initial transition zone is now seven times higher than for the
case with momentless hinges. Finally note that the steady-state
part of this plot involves compressive forces larger than those
in the initial force peak.

Figure 5(b) shows the strain in the c-bars, defined in Fig. 2
of Part I when the cylinder has been compressed by 6 = 1.91/,,
for f= 1 X 10°. This value of § corresponds to a peak in the
force plot. The plots for f= 1 X 10° and f =1 X 10° are
similar, but with slightly lower strains. The plot is presented
for & = 1,91/, rather than 6 = 1.62/,, as used in Part 2, so that
the transition zone has had time to fully form. The peak strain
in the bars is only 2% higher when f = 1 X 10* than for the
case with momentless hinges.

Manufacturing Errors. The original computer model of
the structure was also altered to assess the effect of misaligning
the final seam of the cylinder during manufacture. These errors
were simulated by imposing an initial strain ¢ on the bars which
cross the final join-line of the cylinder. Simulations were per-
formed for cylinders with parameters m = 1, n = 7, /I, = 1
and [./1, = \6 as before. The cylinders were compressed in
approximately 300 steps of size 0,01/, for three different values
of e, 0.1 percent, 1 percent and 2.5 percent. The results are
shown in Fig. 6.

When e = 0.1 percent, Fig. 6(a), the force plot is very
similar to the case when the manufacturing error is zero.

When ¢ = | percent, Fig. 6(b), however, the steady-state
part of the plot becomes periodic with a wavelength correspond-
ing to the folding of a set of n = seven pairs of triangles,
forming a complete turn of the a-helix. The manufacturing error
prevents the folding from proceeding smoothly.

Similar results are obtained when e = 2.5 percent, Fig. 6(c).
Again the results are periodic with a wavelength corresponding
to the folding of n = seven pairs of triangles. The variation in
force is greater than for e = 1 percent as larger errors make it
more difficult to fold parts of the cylinder.

Comparing the strain in the bars for the three cylinders con-
taining manufacturing errors with a perfect cylinder, it is found
that the peak strain is little changed. The largest increase occurs
for e = 2.5 percent, when the peak strain is increased by 16
percent. However, because of the incompatibility introduced
by making some bars longer, the manufacturing errors lead
to generally higher levels of strain distributed: throughout the
cylinder.
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Fig. 6 Force required to compress initially strained cylinders with m =
1,0 =17, I/l, =1, I/, = \3: (a) e = 0.1 percent, (b) @ = 1 percent,
{c) e = 2.5 percent.

5 Discussion and Conclusions

This paper has shown the practical realization of the triangu-
lated cylinders introduced in the previous two papers. In particu-
lar, it has explored two reasons why the experimental behaviour
of these cylinders differs from the predictions obtained from
the simple pin-jointed truss model analyzed in Part II.

The first effect that has been explored is the effect of hinge
stiffness. It has been found that the effect of adding a series of
elastic hinges to the truss model has the effect of raising the
average compressive force to fold the models above zero, an
effect seen in all of the cylinders tested. Indeed, sufficiently
high hinge stiffnesses lead to the compressive force during
steady-state folding being similar in size to the force required
to form the initial transition zone. This explains why the initial
force peak associated with the formation of the transition zone,
predicted from the truss model in Part II, is not shown in the
experimental results.

The second effect that has been explored is geometric mis-
alignment during manufacturing. It has been found that the
simple truss model predicts significant changes in behavior
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when geometric errors are introduced. The force developed,
while still oscillating about zero, no longer has a period corre-
sponding to the folding of one pair of triangles, but corresponds
to the folding of n pairs of triangles. Superimposed on this
global behavior is the folding of individual pairs of triangles.
This behavior is very similar to that seen in the experimental
tests.

Some consideration must be given to the values of the param-
eters used during the simulations. The initial strains e used
to simulate manufacturing errors can be easily justified. The
maximum value of e, 2.5 percent, corresponds to a misalign-
ment during final fabrication of 3 mm for the Cu-Be and steel
cylinder, and of 1 mm for the Irathane and Al-alloy cylinder.
Errors of this magnitude could certainly have been introduced.

It is less easy to justify the particular values of fused during
the investigation of the effects of hinge stiffness. The reason
for this is the generic nature of the original model. In particular,
the deformation of the bars in the original truss model was not
meant to directly simulate the deformation of the triangular
plates, but to investigate the effect of distributed elasticity
within the model. In the Irathane and Al-alloy cylinders, for
example, this deformation in fact takes place by shearing of the
hinges. Thus as no quantitative measure of the bar stiffnesses
has yet been considered, the values of f must be seen as a
qualitative exploration of the effects of hinge elasticity on the
folding process.

To validate the proposed computational model, a simulation
of the behavior of the Irathane and Al-alloy cylinder no. 1 (see
Table 1) has been performed. The simulation included both
hinge elasticity and manufacturing errors, and the following
parameters were chosen to match the observed behavior of the
cylinder: AE = 6-10°N, f = 1.25-107, e = 0.15 percent.
The initial behavior of the cylinder has not been simulated,
because in the experimental model, extra, partially cut triangles
were added at the top of the cylinder to form a level edge.

A comparison of the experimental results (reproduced from
Fig. 1), and the simulation results, is shown in Fig. 7. The
agreement between the results is remarkably accurate; both the
periodicity, and the magnitudes of peaks and troughs, of the
actual behavior are reproduced by the simulation.

Finally, it is interesting to note how this paper fits in with
the work described in the previous two papers. The two Irathane
and Al-alloy cylinders were of the simple type described in
Section 1 of Part I made from isosceles triangles that fold down
to prismatic stacks of plates. The Cu-Be and steel cylinder is
not of this simple type, and was the first to be designed using
the more general geometric formulation presented in the remain-
der of Part I to limit the amount of deformation required during
folding.

The computational modelling techniques of Part II have been
shown to predict many of the characteristics seen in the folding
process. Also, although the changes to the model described
here have radically changed some aspects of the compressive
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Fig. 7 Comparison of the force required to compress Irathane and Al-
alloy eylinder no. 1, and a computer simulation
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Table2 Comparison of computational results for cylinders
withm = L,n = 7, b/l, = 1, and L/l, = 3

| €l man | Cn I max l€c | max R /AE
f=0,e=0 50-10"  69-107° 8.7-107 1.8-107%
Uf=1:10"
e=0 48-10  7.8-107° 89-107%  13.1-107°
Uf =0,
e = 2.5 percent 68-107  83-107° 10.1-107° 1.8-107%

behavior of the cylinder, the internal deformation of the cylinder
during folding has not changed greatly. The maximum internal
deformation, as measured by the strain in the c-bars of the
model, has risen by no more than 16 percent in any simulation
performed. A complete comparison of the computational results
is made in Table 2. The original model remains a valid tool
for predicting and comparing many aspects of the behavior of
foldable cylinders, particularly the amount of deformation they
undergo during folding. Also, the usefulness of having a simple
computational model has been shown, as it can easily be modi-

fied to test the validity of different explanations for observed
experimental behavior.
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Dynamic Effects of Centrifugal
Forces on Turbulence

The dynamic effect of suddenly applied centrifugal forces on homogeneous and iso-
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tropic turbulence in the entrance region of a curved pipe is analyzed by a perturbation
method. The model is for small-scale turbulence and is valid away from the pipe

wall; hence is not restricted to a particular cross-sectional shape and can be applied
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even to external flows if the mean velocity profile is almost uniform, as in the region
outside the turbulent boundary layer on a curved surface. The analysis indicates that
the major effect of centrifugal forces is to generate pure turbulent shear and this
effect is cumulative. Thus, an initially isotropic wrbulence become anisotropic due

to linear effects. This result is in contrast with the effect of solid-body rotation on
isotropic turbulence, where rotation acts on an initially isotropic turbulence only
through nonlinear interactions, and pure linear effects influence the double correla-
tions only if the turbulence is initially anisotropic.

1 Introduction

Curved pipes and pipe bends are commonly found in pipe
networks for engineering systems or human blood vessels.
Therefore, an understanding of the flow through such devices
is of paramount importance. Investigations of curved-pipe flows
can be traced back as early as 1876 (Thomson, 1876). Since
then, the problem has been extensively studied both theoreti-
cally and experimentally for more than a century. A comprehen-
sive review of these studies can be found in Berger, Talbot, and
Yao (1983). Taylor (1929) showed that the transition Reynolds
number in curved-pipe flows is much larger than that found in
straight pipes. Relaminarization has been observed by Sreeniva-
san and Strykowski (1983). They have shown that relaminari-
zation starts to occur after about three turns in a helically coiled
pipe, and the transition Reynolds number could be two to three
times larger than that found in a straight pipe. The mechanism
that causes relaminarization is probably due to the existence of
low speed fluid near the inner bend as a consequence of the
secondary flow induced by the centrifugal forces. The process
takes a rather long distance to occur. In this paper, the turbu-
lence structure near the entrance region of a curved pipe is
examined.

For a laminar developing flow in the entry region of a curved
pipe, three axial regions have been identified (Yao and Berger,
1975). At a distance of the order of the pipe radius from the
entrance, the pressure gradient balances the centrifugal forces
in the core region, and the secondary boundary layer flow near
the pipe wall is gradually developed. This is a consequence of
the fact that the centrifugal force effects are cumulative. Within
this region, the magnitude of the secondary boundary layer is
small compared to the axial boundary layer and the displace-
ment effect of the boundary layer flow on the core flow is
negligible (Singh, 1974). The second region is at a distance
(aR)'” from the entrance, where a is the radius of the pipe and
R is the radius of the pipe curvature (see Fig. 1). Within this
region, the boundary layer flow is further developed and be-
comes three dimensional. However, its displacement effect on
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the core flow is still negligible. It has been shown (Yao and
Berger, 1988) that the solution describing the flow in the first
region is included in that of the second region. A comparison
of two solutions shows that the size of the first region is s
< 0.1(aR)""?, where s measures the axial distance along the
centerline of the pipe. This has been experimentally verified by
Olson and Snyder (1985). A substantial change of the core
flow is developed at a much longer distance, 0(a Re/D''?),
from the entrance, where Re = Wya/v is the Reynolds number,
D = (a Re)'"? is the Dean number, W, is the mean axial veloc-
ity, and @ = @/R is the curvature ratio. As suggested by Pedley
(1980), this is the required distance for the transport of second-
ary vorticity from the boundary layer to the core. Therefore,
the interaction between the core flow and the boundary layer is
small and can be ignored in the entry region of a curved pipe
if s <aRe/D'

Even though centrifugal forces have a small direct effect on
the development of the laminar core flow within a short distance
from the entrance, their effects are much stronger for a turbulent
flow because the redistribution of turbulent energy by the cen-
trifugal forces are first-order effects. Moffatt (1981) has sug-
gested that rapid distortion theory (RDT) could be used to
analyze turbulent flow in a curved bend by relating the statistical
properties of the turbulence immediately after the bend to those
before the bend. The basis of RDT was originally suggested by
Prandtl (1932) and Taylor (1935), and was used to estimate
homogeneous turbulence behind a net of grid bars in a wind
tunnel contraction. Since then, the theory was extensively devel-
oped by Batchelor (1953) and Batchelor and Proudman (1954).
The theory provides a means of calculating the effect of a
sudden change in mean velocity on a turbulent flow, and is only
applicable when the time taken for a fluid particle to pass
through the zone in which the mean velocity changes rapidly
is much less than the time taken for the turbulence to change
owing to viscous and nonlinear inertia forces. Therefore, it fol-
lows from these assumptions that the problem involving a ran-
dom process is linear and is tractable by straightforward mathe-
matical methods. More explicitly, the theory is applicable when
turbulent diffusion and dissipation are negligible when com-
pared with the rapid change of the mean flow and the pressure-
redistribution effects. Townsend (1970, 1980) successfully used
the theory to interpret experimental shear-flow data. Hunt
(1973) applied the theory to nonhomogeneous distortions.

The turbulent flow in the entry region of a curved pipe shares
some feature with that in a solid-body rotation field, although
they differ in many important aspects. Bradshaw ( 1969) pointed
out the similarities between the effects of centrifugal forces due
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to streamline curvature, the effects of Coriolis forces due to
rotation, and the effects of buoyancy forces due to density strati-
fication on turbulent shear flows. He showed that a formally
exact analogy can be drawn between meteorological parameters
such as the Richardson number and the parameters describing
the effect on turbulent shear flows of streamline curvature in
the plane of the principal rate of strain or rotation about an axis
normal to that plane. Thus, it is of interest to us to review the
literature on the effects of rotation on turbulent flows, Our anal-
ysis indicates that, contrary to popular belief, there are signifi-
cant differences between the effects of centrifugal forces due
1o streamline curvature and the effects of Coriolis forces due
to solid-body rotation on turbulent flows. As discussed in the
Appendix, this difference is a consequence of the difference in
the mean flow, which plays an important role in the production
of Reynolds stresses. In order to compare and contrast the simi-
larities and differences between the effects of centrifugal and
Coriolis forces, we give a brief review of the literature on rotat-
ing turbulent flows.

The effects of rotation on turbulence has been studied experi-
mentally by Traugott (1958), Ibbetson and Tritton (1975),
Wigeland and Nagib (1978), and Hopfinger, Browand, and
Gagne (1982). Traugott (1958) studied the effect of rotation
on turbulence generated by passing air through several grids in
the annular section between two rotating concentric cylinders.
He found that rotation decreased the rate of decay of turbulence.
Ibbetson and Tritton (1975) investigated the effect of rotation
on turbulence generated in air by the sudden axial displacement
of two grids in an annular container on a rotating table. They
found that increasing the rotation rate produced a faster decay
of the turbulence. Ibbetson and Tritton suggested that inertial
waves carried energy to the boundaries of their apparatus, where
it was dissipated in viscous boundary layers, thereby increasing
the rate of decay of turbulence kinetic energy. They also ob-
served that rotation produced a large increase in the integral
scale parallel to the rotation axis, and a smaller increase in the
integral scale perpendicular to the rotation axis. Wigeland and
Nagib (1978) studied the decay of rotating grid-generated tur-
bulence by passing a uniform flow through a rotating duct
equipped with a honeycomb followed by a grid. Their experi-
ments showed that in most cases, the turbulence decayed more
slowly, and the time-integral scales increased more rapidly as
the rate of rotation was increased. In a few cases they observed
that the turbulence intensity decayed faster at small rotation
rates but slower at larger rates of rotation. Hopfinger, Browand,
and Gagne (1982) performed experiments in a deep rotating
tank of water with an oscillating grid at the bottom. They ob-
served that near the grid, where the Rossby number was large,
the turbulence was locally unaffected by rotation. Away from
the grid, the intensity of the turbulent velocity fluctuations de-
creased and the scales of the turbulence increased. At a local
Rossby number of about 0.2, they observed a sudden transition,
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which terminated the turbulent Ekmann layer. Above the Ek-
mann layer, the flow consisted of concentrated vortices having
axes approximately parallel to the rotation axis and extending
throughout the depth of the fluid above the Ekmann layer. Hop-
finger, Browand, and Gagne observed isolated propagating
waves traveling along the axes of individual vortices. They used
the phrase rotation-dominated rather than quasi-geostrophic to
describe the turbulent velocity field.

The effects of rotation on turbulent shear flows have been
analyzed by Bertoglio (1982) using rapid distortion theory. He
found that Coriolis forces induced by rotation about an axis
normal to the plane of the mean shear had a stabilizing or
destabilizing influence on the turbulence, depending on the
sense of rotation. Bardina, Ferziger, and Rogallo (1985) used
large eddy and direct simulations to analyze the effects of uni-
form rotation on homogeneous turbulence. Their numerical sim-
ulations indicate that the predominant effect of rotation is to
decrease the rate of dissipation of the turbulence, and to increase
the length scales, especially those along the axis of rotation.
They showed that it was possible to duplicate the phenomena
observed in the experiments of Wigeland and Nagib (1978).
They demonstrated that the increase in the decay of turbulence
observed in some cases by Wigeland and Nagib is due to inter-
actions between the rotation and the wakes of the turbulence-
generating grid which modifies the initial conditions in the ex-
periments. Cambon and Jacquin (1989) studied the anisotropic
effects induced by solid-body rotation on homogeneous turbu-
lence by applying an eddy-damped quasi-normal Markovian
model to evaluate the triple correlations, which allows aniso-
tropic effects to be taken into account., A direct numerical simu-
lation of the decay of initially isotropic turbulence in a rapidly
rotating frame shows that the turbulence remains essentially
isotropic during the major part of the decay (Speziale et al.,
1987). They found that the rapid rotation has the primary effect
of shutting off the energy transfer; consequently, the turbulence
dissipation is substantially reduced. The effects of uniform rota-
tion is included in a single-point model for initially isotropic
turbulence by Mansour et al. (1991). The effects of rotation
on turbulence have been reviewed recently by Hopfinger and
Linden (1990).

The effects of streamline curvature on turbulent shear flows
has been studied by Castro and Bradshaw (1976), Townsend
(1980), Muck, Hoffmann, and Bradshaw ( 1985), Hoffmann,
Muck, and Bradshaw (1985), and Hunt, Leibovich, and Rich-
ards (1988). Castro and Bradshaw ( 1976) made extensive one-
point measurements of the turbulence structure in a highly
curved mixing layer bounding a normally impinging plane jet
with an irrotational core. They found that the Reynolds stresses
decreased in the region of high stabilizing curvature and then
increased rapidly further downstream, overshooting the plane
layer values before finally decreasing. Townsend (1980) dem-
onstrated that the behavior of the ratio of the shear stress to the
turbulence intensity observed by Castro and Bradshaw (1976)
in a curved mixing layer could be reproduced qualitatively using
rapid distortion theory without any difficulty. He suggested that
the curious behaviour of the stress ratio was due to inertial
waves that can propagate in rotationally stable flows. To illus-
trate this, he considered the effect of solid-body rotation on
turbulence with an initial Reynolds shear stress. He obtained a
closed-form solution of the rapid strain equations for this simpli-
fied model, and showed that the Reynolds shear stress goes
through damped oscillations. Townsend (1980) also studied
the irrotational distortion of turbulence for an axisymmetric
constant-circulation mean flow along a curved path. Muck,
Hoffmann, and Bradshaw ( 1985) studied the response of a well-
developed turbulent boundary layer to suddenly applied convex
surface curvature, using conditional sampling techniques. In a
companion paper, Hoffmann, Muck, and Bradshaw (1985)
studied the response of a turbulent boundary layer to suddenly
applied concave surface curvature. Their main conclusion was
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that the effects of convex (stabilizing) curvature and concave
(destabilizing ) curvature on turbulent boundary layers was to-
tally different. Mild convex curvature tends to attenuate the pre-
existing turbulence without producing large changes in statisti-
cal-average eddy shape. Concave curvature, on the other hand,
results in the generation of longitudinal vortices, together with
significant changes in the turbulence structure. Hunt, Leibovich,
and Richards (1988) used an asymptotic analysis to study turbu-
lent shear flows over hills with low slopes. They divided the
flow into two regions, an outer and an inner region. The outer
region was further divided into an upper and a middle layer,
while the inner region was divided into a shear-stress layer and
an inner surface layer. They derived analytical solutions for the
inner region.

In this paper, the turbulence structure in the entry region of
a curved pipe is examined. The turbulence is subjected to a
rapid influence of the centrifugal forces instead of the mean-
flow distortion. The turbulence is inhomogeneous along the
mean flow direction. The physical model consists of a short
straight pipe followed by a curved section so that the displace-
ment effects of the boundary layer is negligible. A homogeneous
and isotropic turbulence in the straight pipe is generated slightly
upstream of the entrance of the curved pipe. The scalings re-
vealed by the perturbation solutions show that turbulent diffu-
sion and dissipation induced by the centrifugal forces are
0(Bs)?, where # is the ratio of the convection time to the
turbulent turnover time. This implies that the linearization is
proper only when s < 1, which agrees with the condition
previously established for RDT (Batchelor, 1953; Hunt, 1973).
Even though the analysis has not been carried out to include
the distortion of the mean flow by the Reynolds stresses, which
are treated as smaller-order terms, the model can be improved
up to 0(Bs)? by following the expansion procedure outlined in
the paper. Two curvature effects can influence the flow develop-
ment. One is the geometric effects due to the variation of curva-
ture on the cross section of the pipe. This is the factor which
has been extensively used to correlate the turbulence data for
curved flows. It is important to match the curvature ratio in
order to satisfy the geometric similarity. Second is the direct
effect of the centrifugal forces induced by the circular path of
the mean flow. This effect on turbulence, which has so far been
overlooked, is the focus of the present paper. As shown by
Dean (1927, 1928), the effect of the centrifugal forces ensures
the dynamic similarity of the flows along a curved path.

The mean flow analysed in Section 3 is for the model which
consists of a short straight section before the curved pipe, as
shown in Fig. 1. The velocity profile at the entrance to the
straight pipe is taken to be uniform. The boundary layer dis-
placement effect on the core flow is small in the entrance region
of the pipe and is, therefore, not considered. Thus, the mean
velocity profile in the core of the pipe remains uniform. In this
respect, our model differs from the analysis of Townsend
(1980) and Hunt et al. (1988), who considered a mean velocity
gradient in their analysis. The impact of this difference in the
mean flow is discussed in the Appendix, where the role played
by the mean flow in the production of Reynolds stresses is
analyzed. Two types of upstream influence on the turbulent flow
exist because of the presence of the curved pipe: one is induced
by the mean pressure field and the other is due to pressure
fluctuations. Since the range of their influence is rather short
and their magnitudes are exponentially small, these effects are
indicated by “‘exp’’ so that the analysis can concentrate on the
more profound effects of the centrifugal forces on the turbulence
structure in the curved pipe. Consequently, the current analytical
results are also valid for a curved pipe, connected to a large
flow chamber, if the velocity profile at the pipe entrance is
approximately uniform.

In Section 4, grid turbulence whose scale, 1, is smaller than
the radius of the pipe is considered. The analysis is carried out
for the core region of the pipe and is not valid at a distance
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O(1) from the pipe wall. Thus, our results cannot be compared
with the turbulent boundary layer measurements of Muck, Hoff-
mann, and Bradshaw (1985) and Hoffmann, Muck, and Brad-
shaw (1985) for flow over slightly curved surfaces. The results
of our analysis are not limited to circular pipe cross section,
and can be applied to any cross-sectional shape or to external
flows along a circular path if the mean velocity profile is uni-
form, as in the region outside the turbulent boundary layer on
a curved surface. Higher-order rational expansions can be de-
rived for the mean flow as well as the turbulent quantities as
outlined in this section. This may extend the theory to a larger
domain by including some nonlinear energy-cascade processes
in the model. In this paper, however, only the leading-order
terms of turbulence are obtained. Thus, the current model is
identical to RDT. The key centrifugal force effect is to turn the
principal Reynolds stresses 45 deg on the plane on which the
centrifugal forces act and of the mean-flow direction. The impli-
cations of the present findings are then summarized and possible
extension of the current results to a curved turbulent flow with
variable curvature is discussed in Section 5.

Our analysis indicates that under the dynamic influence of
centrifugal forces, an initially isotropic turbulence in the core
region of a curved pipe becomes anisotropic due to linear ef-
fects. In this aspect, the effects of centrifugal forces differs from
that of Coriolis forces due to solid-body rotation. Coriolis forces
due to uniform rotation act on an initially isotropic turbulence
only through nonlinear interactions, and pure linear effects in-
fluence the double correlations only if the turbulence is initially
anisotropic (Bardina et al., 1985; Cambon and Jacquin, 1989).
This difference between the effects of centrifugal and Coriolis
forces may be traced to the difference in the mean velocity
profiles in the two cases. The mean flow plays an important
role in the production of Reynolds stresses. In the case of solid-
body rotation, if the turbulence is initially isotropic, there is
no linear mechanism to generate Reynolds stresses and the
turbulence can become anisotropic only through nonlinear inter-
actions. On the other hand, if the mean velocity profile is uni-
form, as in the core of a curved pipe, centrifugal forces can
generate Reynolds shear stress through linear effects. This is
discussed in detail in the Appendix.

2 Formulation

The flow through a pipe of circular cross section, radius a,
that is straight for s < O but at s = 0 suddenly bends to form
an arc of a circle of radius R (see Fig. 1) is considered. If the
axial and the radial distances are measured by a's and a-r,
respectively, and the velocity components are normalized by
the mean axial velocity W, of the flow and the pressure by
pW 3, then the Navier-Stokes equations in toroidal coordinates
take the form (see Yao and Berger, 1975),

1¢a
9—“+£+——U+Ji‘£+a(s;sin¢+ucosw) =0,
ar r rady ds
du du vdu du v?
—tuo—t-—+Jw— ——~awsin
at dr  rady was r v
dp
= - =+ O(Re "),
ar ( )
v dv v dv v w
— —+-— 4+ Jw— + — — aJw?
at “6‘:’ rady was r Ll
S O(Re™'),
rdy
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— + Jw— + aJw(u sin i + v cos )
r dy as

= —J@ + O(Re ™), (2.1)
as

where J = 1/(1 + ar sin ), @ = a/R, Re = Wyalv, and
p and v are the density and kinematic viscosity of the fluid,
respectively. The Navier-Stokes equations in cylindrical polar
coordinates for the upstream straight pipe (s < 0) can be ob-
tained by setting & = 0 in Eqgs. (2.1).

The flow quantities in (2.1) are expressed in terms of
their mean and fluctuating components, ¢ = ® + S¢’, where
B = gqo/Wy. The turbulent kinetic energy of the straight-
pipe flow is go = (ko)"? = ['? + v'? + w'?]"? and (u’,
v', w') are the dimensional turbulent velocities. Since it will
not cause confusion, the prime associated with the fluctuation
quantities will be dropped in order to simplify the notations
in the following analysis. The equations describing the mean
flow, obtained from (2.1), are

ﬂ+£+l9j+a’ ﬂV-i—.:w:Usiru,r':+‘i-’c-::u.*;qﬂr) =0,
ar r rdy ds
au  VvaUu au  v?

+IW = — = — aJW?si
ar r dy as r sin

=2 ORe, B,
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ﬂ‘_"+‘_’ﬂ’+m§l’+ﬂ’—uw2cow

ar r dy ds r
2 O(Re™’, %),

r ay
gl YOV o W o s = Vicos @)
or r dy as
- 4% +ORe™, Y. (22)

s

It can be concluded from the above equations that the straight-
pipe flow forms the zeroth-order solution of (2.2) if s < Re/
D'?, where D = (@ Re)'’? is the Dean number (Dean, 1927,
1928). Within this region, the displacement effect of the bound-
ary layer is small. In Section 4, the effects of the centrifugal
forces are shown to be characterized by a set of linearized
Navier-Stokes equations if Ss < . Since the physical meaning
of 3 is the ratio of the convection time to the turbulent *‘turn-
over’' time, the present analysis coincides with that of RDT.
Equations (2.2) indicate that the influence of the Reynolds
stresses on the mean flow is of 0(8s)?. It can also be shown
that turbulent diffusion and dissipation induced by the centrifu-
gal forces are small and are of O(Ss). Therefore, the solution
for the problem can be expanded in a double series of o and
B. The leading term is the solution for a straight-pipe flow and
the dominant effects of the centrifugal forces are described by
the rapid distortion theory in the entry region of a curved pipe
for s < 1/ and s < Re/D'". Therefore, the primary concern
of this paper is the analysis of the effects of centrifugal forces
on turbulence.

Explicitly, the expansions are assumed to be

W =1+ aW, siny + 0(a?, 87,
U = aU, sin ¢ + 0(a?, 8?),
V = aV, cos  + 0(a?, B2),

P =P, + aP, sin iy + 0(a?, g7, (2.3)
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for the mean flow and
w=w, +aw, + 0(a?, ),

u, + au, + 0(a?, 4),

u

v, + av; + 0(a?, B),

v

p=p, +ap +0(a’, §), (2.4)

for the fluctuating components, where the subscript “‘s’’ is used
to denote the quantities associated with straight-pipe flows. Both
the mean-flow and the fluctuating components associated with
the straight-pipe flows are known. Taylor’s hypothesis is appli-
cable to the fluctuating quantities in the straight pipe; therefore
they are function of (r, i, s-t). The quantities with the subscript
‘1" are due to the centrifugal forces and can be determined
and expressed in terms of the known straight-pipe solutions.

The equations for the turbulent fluctuating components can
now be obtained by subtracting (2.2) from (2.1). The equations
of 0(a), which are consistent with (2.3)-(2.4), are

ow L w 1aw  ow
ar r ray as
" aw, ;
= rsin g — — u, sin ¢y — v, cos f |H(s) ; ,
as
%‘:'+%—2w‘.sinwlf(s}=—%+{rsinu’f%
ou, ol ol oU,\ .
-0 =+, —+ W, =+ w,—
[('Br E ar ' s was)sm"{'
+%(V,g—::+ U.us—ZV,u,)cosq'x]},
@+@l—2w,coslﬂH(5)=—l%+ ?‘Sinlﬁfau’
at ds r dy ds
—[(U.a”‘+w. au’—i—-—-—Ul—V'U,)sint;';
ar as r
+ u%_}rh% w&_{_%)msw
* ar r oy i r ’
%+%+(u,sin¢+u,cos¢)1{(s)
=—%+ rsinl‘b%— ([)’.a_“v’+u,i"llﬁ
ds as ar ar

where H(s) is the Heaviside step function. The above equations
reveal that the turbulence field is distorted, to first order, by
two elements: the centrifugal forces and the effect induced by
variable curvatures. The terms within the curly brackets on the
right-hand side of the above equations represent the effect of
variable curvature. Among them, the most important curvature
effect is the energy produced by induced mean flow motions
(terms in square brackets). Turbulent diffusion and dissipation
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are of 0(8) in the transport equations governing the fluctuating
quantities. Therefore, they have no effects on the solutions
which is larger than 0(3) (see Eqgs. (2.4)). The variable-curva-
ture effects ensure the geometric similarity and are negligible
for small turbulent eddies or for slightly curved pipes. In the
following analysis, we focus on the effect of the centrifugal
forces to ensure the dynamic similarity of the flows. In Sections
3 and 4, it will be shown that the disturbances induced by
the centrifugal forces can propagate upstream because of the
“‘pressure’’ effect. Also, the energy production by the induced
mean flow decays fast and is negligible compared with the
effect of centrifugal forces.

3 Mean Flow

The equations describing the first-order mean flow can be
obtained by substituting (2.3) into (2.2) and collecting terms
of O(a). They are

W U=V oW,
ar r as

olU, dP,
—l_F e
as () ar

=0‘

oW _ _ o i

ds as

Eliminating U,, V;, and W, among the above equations results
in

%P,
ar?
Since (aU,/ads) = 0 at r = 1 (slip condition) and (dV,/ds) =
0 at r = 0 (symmetry condition), the boundary conditions for

P, can be determined from the second and third equations of
(3.1) and are

oP
— = H(s) at
ar

LoP_ P, 2P

= 0.
rdar r* 9s?

(3.2)

r=1, and P,=0 at r=0. (3.3)

It should be noted that the slip condition imposed at r = 1 is
equivalent to setting U, = 0 at r = 1. Applying Fourier trans-
form in the sense of generalized functions (Lighthill 1970), it
can be shown that the solution of (3.2) satisfying (3.3) is

l k< .
Pi=o—| [wé(h) + i]

Li(Ar)

m exp{ —iAs)d\ (3.4)

where the I's are modified Bessel functions and ¢ is the Dirac
delta function. U;, V;, and W, can then be calculated from (3.1)
using (3.4). It is easier to interpret the physics of the flow by
examining the asymptotic expansion of (3.4), which is

12 3
P.=rH(s)—sgn(s)(:—2) (r—%)exp(—@s}, (3.5)

where sgn (s) denotes the sign of s. Equation (3.5) clearly
shows that the first-order mean flow induced by the centrifugal
forces consists of two parts. First, the pressure gradient is estab-
lished in the curved pipe in order to balance the centrifugal
forces. Secondly, the induced secondary flow (exponential de-
cay term) exists within three radii both in the upstream (s <
0) and the downstream (s > 0) regions if one uses 1 percent
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as the criterion to determine the penetration depth. The magni-
tude of the induced secondary flow drops below 5 percent when
s > 2. This agrees very well with the measurements of Ito
(1960) who shows that the secondary flow exists before the
fluid enters the curved pipe. Since the induced secondary flow
is only important within such a small region, it is ignored in
the following analysis. This allows the discussion to concentrate
on the more profound effects of the centrifugal forces on the
turbulence structure in curved-pipe flows. Including the induced
secondary flow in the analysis will not present any extra diffi-
culty, but the algebra will be more tedious.

It is convenient to summarize the mean flow before solving
(2.5) for the fluctuating components. The mean flow becomes

W=1+aexp + 0(a? ),
U=aexp+ 0(a? 8%,
V= aexp + 0(a?, ),
P = constant + a[rH(s) + exp] + O(a?, %), (3.6)

where *‘exp’’ denotes the exponentially small terms. It is worth-
while to note that the turbulent flux terms in (2.2) are of 0(52).
Therefore, the mean flow can be accurately calculated up to
0(B?) by incorporating the Reynolds stresses determined in
Section 4 into the mean flow analysis.

4 Turbulence

Substituting (3.6) into (2.5) and neglecting the exponentially

small terms results in
ou 1 i)

laU| aW|
e T

jod ! =0,
ar r royg as

ﬂ‘-'—i—é?—l— 2w, sin YH(s) = —%.

ot ds or

ov, 1 apy
— + — — 2w, cos YH(s) = — ——,

ot T gy T M CSYR() =~ ooy

aW] d

B STl S [us sin o + v, cos YlH(s) = — %[:_1 (4.1)

at as
If the turbulence scale ‘1" is small relative to the radius of
the pipe, the turbulence structure in the core of the pipe is not
influenced by the boundary conditions at the wall. It is conve-
nient to use Cartesian coordinates to describe the solution for
this limiting case (see Fig. 1). This is because the turbulence
in the core of the pipe is homogeneous in x and y. Accordingly,

we introduce stretched coordinates ¥, ¥, ¥, 7 defined by
rsin iy = rysin iy + €X, rcos ¥ = ry cos Py — €5,
(4.2)

5§ =¢€5, t=¢l,

where € = 1/a is a small parameter, and (ry, ¢) is a reference
point in the cross-sectional plane of the pipe. The corresponding
Cartesian components of velocity are related to the toroidal
components by

= usinf + v cos i,
U= —ucosy +vsin i,
W= w. (4.3)

We assume that the turbulence upstream of the bend is statisti-
cally stationary and homogeneous. Thus, it can be Fourier ana-
lyzed in the sense of generalized functions as

@ (r, 1) = _r Si(K) expli(e 'Kiro + KiX
+ Ko7 + Kob — KaD)1dK, (4.4)
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where K, = K, sin ¢y — K, cos i, K denotes (K, K;, K3) and
K; is a dimensionless wave number defined in terms of the
dimensional wave number k; as K; = 1%;. Here, we have used
the index notation (x,, X2, x1) to denote (x, y, s) and (u,,, U2,
u,3) to denote (if;, T;, W;).

Since the turbulence is stationary in time, the turbulence be-
comes inhomogeneous in the streamwise direction due to the
sudden application of centrifugal force at s = 0. The local
turbulence can be expressed in terms of the spectra of the up-
stream turbulence through transfer functions Q,(5, K), 0,(¥,
K), 0:(5, K), Q,(5, K), M, (7, K), M, (5, K), M5(5, K) and
M, (5, K) as

renl 1 oEs
o(r,0) | _ 5,

(T, 1) ‘EL o s K)| SE
pi(r, 1) 0,(5 K)

X expli(e'K,rp + K\ X + Ko7 — Kif)]dK

M (5, K)
+er

M, (5, K) s
Mi(5, K)
M, (5, K)

X expli(e 'K,ry + K\ ¥ + K5 — Ki)]dK.

1(K)

(4.5)

The transfer function for pressure, Q,(#, K), is obtained by
solving

(D* = K1) Q, = 2iK, exp(iK:5)H(¥) (4.6)

where

d’Q
das*

Equation (4.6) is derived by the standard procedure of taking
the divergence of the momentum equation and using the conti-
nuity equation in (4.1). The pressure perturbation must vanish
far upstream of the bend. Thus, Eq. (4.6) has to be solved
subject to the boundary condition §¥— —oe, , — (). The solution
of (4.6) which remains bounded as §— %, may be expressed
as

Ky, = [K}+ K31, and D?Q, =

2iK,
Q, (5, K) = — 7 exp (iK:9) H(5)
K[K + iK); sgn (5)]
e exp(~KualsD), (47)
where K = [K} + K} + K3]'. Equation (4.7) indicates that

the sudden change in curvature of the pipe at ¥ = 0 has an
upstream influence on the fluctuating pressure, which decays
exponentially upstream of the bend. The region of upstream
influence is longer for the larger eddies, and is negligible for
the smaller eddies.

Once Q, has been determined, the transfer functions for the
fluctuating velocity components may be obtained by solving the
momentum equations:

(D — iK3)Q, = —iK\Q, + 2 exp(iKG)H(F),
(D - flKa)Qz = _iK2Q;;‘
(D — iK3) Qs = =DQ,. (4.8)

The associated boundary conditions are, as § = —%, @, — 0,
@, — 0, @; = 0. The solution is given by

(5, K)

2
= [2(1 = %).‘s‘ 4"; Ka:l exp(iKs:¥) H(¥) + exp,
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” .

0:(5, K) = —[ ‘:_fz F+ 4‘KI'("§"K"] exp(iKs5)H(5) + exp,
. 2 _ g2

0:(5, K) = —I:ZI;;K’ T+ 2“\,‘(7(;4 LSE ]

X exp(iKs5)H(F) + exp.
The transfer function, M,(7, K), is obtained by solving

(4.9)

(D? = KM, = —iK, exp(iKs9)H(5), (4.10)

subject to the boundary conditions ¥+ —c¢, M, —+ 0. The solution
of (4.10) which remains bounded as ¥ — < is given by

iK.
M, (5, K) = }(—j exp(iKsH)H(F)

_ KilK; + iK), sgn (5)]
2K.K*?

exp(—Kp|5]). (4.11)

The transfer functions, M; (5, K), are then determined by solv-
ing the momentum equations:

(D — iK3)M, = —iK\M,,
(D = qu,)M; - _IIKQMP,
(D — iK3)M; = —DM, — exp(iK;9)H(F). (4.12)

The solution of Egs. (4.12), subject to the boundary conditions
F—+ —oc, M; — 0, may be expressed as
K |K_1 2iK\K 1 3
+
K? K

M(5, K) = [ ] exp(iKs5)H(5) + exp,

My (5, K) = K’K‘

%
o - (5

exp(iKs5)H(3) + exp,

- ) l’Ks(K1 }
] K"

X exp(iKxiF)H(F) + exp.

4.1 Velocity Correlations. The transfer functions (4.9)
and (4.13) are used to calculate the correlations in terms of
upstream spectrum

21K2K2:|

(4.13)

1 .
¢3.H{K) = m Ji:, R,‘,-j(x, 0} exp(-:l( x)dx,

where R, ;(x, 7) = @i, (r, i (r + X, t + 7) is the velocity
correlation in the straight pipe. In the following, only one-
point correlations without time delay will be presented. The
correlations may be expanded as a perturbation series in a:
R!' =Ky + aRI..‘! +.

where

Ryy = @ (r, )i, (v, 1) + @ (r, N (r, 1), (4.14)

is the correction due to centrifugal forces. Substituting Egs.
(4.4) and (4.5) into Eq. (4.14), and using the orthogonality
relation of the Fourier modes

Si(K)SH(K') = ¢,;(K)6(K — K') (4.15)

where ¢ is the delta function of Dirac and the asterisk denotes
the complex conjugate results in
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Ry;= e'f le(r- K) Exp(_iKa-f)fs.u(K)

+ QF (¥, K) exp(iKs5) £, 5/(K) |dK

* ef [M_,-(S", K) BXP(—fKaf)f;.n(KJ

+ M#(F, K) exp(iKy) f,.y(K) 1dK.

In order to simplify the calculations and elucidate the physics
of the problem we now assume that the upstream turbulence is
isotropic, so that
E(K)
4mK*

(Batchelor 1953), where E(K) is the dimensionless form of
the energy spectrum function. The velocity correlations become

¢,4(K) = (K%, — K:K)), (4.16)

Rl.x.x = Rl.yy = Rl,u = Rl.,u- = JRI.W = 0;

Ry = 3 €SH(S). (4.17)

Equations (4.17) indicate that at order «, the only effect of the
centrifugal force is to generate turbulent shear stress in the x-s
plane. Since the mean flow through the pipe remains unchanged,
there is no mechanism to stretch or squeeze the fluid elements.
Thus, the turbulent normal stresses in the x, y, and s directions
do not change. The trace of the velocity correlation tensor,
R + R,y + R,;, represents the Kinetic energy of the turbulent
fluctuations. At order a, there is no mechanism to transfer en-
ergy to the turbulent fluctuating velocity field. Hence, the turbu-
lent kinetic energy remains unchanged. Since there is no compo-
nent of the centrifugal force acting in the y-direction, the turbu-
lent shear stresses in the x-y and y-s planes are zero. Thus,
under the influence of centrifugal force, the principal axes of
Reynolds stresses become inclined at an angle of 45 deg to the
x and § axes.

It may be noted that although Eq. (4.17) predicts no change
in the intensity of the turbulent velocity fluctuations in the x, v,
and s directions, in a real flow situation, the turbulence intensity
decays due to the dissipation of turbulence kinetic energy, as
observed in experiments on the effects of rotation on turbulent
flows (Ibbetson and Tritton, 1975; Wigeland and Nagib, 1978).
However, Townsend (1970, 1980) and Maxey (1982) have
demonstrated that RDT can predict the ratio of the Reynolds
stresses to the local turbulence kinetic energy fairly well even
in cases where the turbulence is decaying. Thus, the range of
applicability of the RDT predictions (4.17) can be increased
by taking the ratio of the Reynolds stresses to the turbulence
kinetic energy.

Equations (4.17) reveal that an initially isotropic turbulence
becomes anisotropic due to the linear effects of centrifugal
forces. It is worthwhile to note that in the closely related prob-
lem of solid-body rotation, an initially isotropic turbulence be-
comes anisotropic only through nonlinear interactions, and pure
linear effects influence the double correlations only if the turbu-
lence is initially anisotropic (Bardina et al., 1985; Cambon and
Jacquin, 1989). As discussed in the Appendix, this difference
between the effects of centrifugal forces due to streamline cur-
vature, and the effects of Coriolis forces due to solid-body
rotation is due to the difference in the mean flow, which plays
an important role in the production of Reynolds stresses.

The diagonal components of the Reynolds stress tensor along
the principal directions are given by

Ree = 3 [1 + 15 aeSH()] ,
Ry =3[1 — f aeSH(3)] , (4.18)
where £ and n are the principal axes of Reynolds stress on the
x-s plane, inclined at angles of 45 deg and 135 deg, respectively,
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to the x-axis, Rge = u, Ry, = u}, and u; and u, are the compo-
nents of the turbulent velocity fluctuations in the £ and n direc-
tions, respectively. Equation (4.18) indicates that under the
influence of centrifugal forces, the intensity of fluctuations of
the turbulent velocity components is increased in the £ direction,
and reduced in the 7 direction. Downstream of the bend, the
Reynolds stresses R and R, increase linearly due to the contin-
uing distortion of the turbulence structure under the influence
of centrifugal force. The linear growth of the effect of centrifu-
gal forces in (4.18) is a consequence of ignoring the nonlinear
energy transfer and dissipation in RDT. As discussed before,
this limits the model for 8s < 1. Further downstream beyond
the validity range of the current model, the nonlinear process
will restrict the linear growth; then, turbulence will reach a new
equilibrium state, The true range of validity of the current results
can not be determined without comparing with experimental
data, which are not available at present. Equation (4.18) indi-
cates that the perturbation series breaks down when aes = as
becomes O(1), that is, when s becomes O(a '), or in other
words, when the distance in the streamwise direction is of the
order of the radius of curvature of the pipe. For a slightly curved
pipe, @ < 1, which implies that a ™' > 1. Thus, this condition
is not too restrictive. Equation (4.18) also indicates that the
dynamic effect of centrifugal forces is independent of the radius
of the pipe and the size of the turbulent eddies. It is worth
noting that the model in the second region of the pipe entrance is
identical to the current analysis as discussed in the Introduction.
Thus, the perturbation results are limited by much less restric-
tion and can be applied as long as 5 < 1/a'”.

4.2 Pressure-Strain-Rate Correlations.
strain-rate correlation

The pressure-

of;
ap= plr, !)[Ti(r' 0+ 3—?{:-, r)] (4.19)

may be written as a perturbation series in a:

oy =aoiy ..., (4.19b)
where
oy = p(r, r)[aa"’ (r,t) + L (r, I)] (4.19¢)
ax; ox;

is obtained by substituting (4.4) and (4.5) into (4.19¢) and
using (4.15). This gives

Oy = —€ f 0,(5, K) exp(—iKs5) [iK;f: 2 (K)

+ iK f,(K)1dK — e _r M, (5, K) exp(—iKs5)

X [iK;f,i1(K) + iK, f,.;(K)]dK.

For an isotropic upstream turbulent velocity field, the pres-
sure-strain-rate correlations are given by

Tlax T Oy T Ol T Oly = Ty = 0‘
1
- 10 H(3).

Equation (4.20) indicates that o, tends to reduce the magnitude
of R,, induced by the action of centrifugal force.

The pressure-strain-rate correlations, which can hardly be
measured at present, play an important role in models of turbu-
lence in which the Reynolds stresses are determined from the
solution of transport equations for these variables (Launder,
Reece, and Rodi 1975; Launder, 1975; Gibson and Rodi, 1981).
Launder et al. (1975), Launder (1975), and Gibson and Rodi
(1981) have approximated the pressure-strain-rate correlation
tensor, oy, as

al,xs = (4'20)
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oy = aﬁj” + gff’, (421a)

where

o) = -C, = (u—u_, - 1?5,3) . (421b)
q 3

I

and

o) = —Cy(Py — §P6y). (421¢)
Here g* = uu; represents (twice) the turbulence kinetic energy,
€4 is the rate of dissipation of turbulence kinetic energy, P; and
P are the rate of production of Reynolds stress, u;u;, and turbu-
lence kinetic energy, (3)q°, respectively, and the coefficients
C, and C, are taken as constants in high Reynolds number
turbulence. The term &’ represents the contribution of nonlin-
ear turbulence interactions to the pressure strain-rate correla-
tions and is due to Rotta (1951). It is based on the hypothesis
that the rate of return of anisotropic turbulence to isotropy is
proportional to the local level of anisotropy. The ratio
(3)g*/€, in Eq. (4.21b) represents a characteristic decay time
of the turbulence. The term o {?’ represents the contribution to
the pressure strain of the linear interactions of the turbulence
field with the strain rate of the mean flow, and was first proposed
by Naot, Shavit, and Wolfshtein (1970), as a replacement for
Rotta’s term. Launder et al. (1975) identified {7 as the domi-
nant term in a more general expression and combined it with
o to obtain good results for a number of simple free shear
flows. Launder et al. (1975) considered only the interactions
of the turbulence with mean shear. Launder (1975) extended
the model to include the additional effect of buoyancy forces
due to mean density stratification in a gravitational field. He
suggested that in the presence of body forces, the rate of produc-
tion of Reynolds stress, P;, should be taken to stand for the
total production of wu; due to the combined effects of shear
and body forces. For small-scale turbulence in the core of a
curved pipe, these production terms are given by

Py, = damu; + 2auul,
Py =0,
P:ﬂ = _zalﬁ“g et 2au|u§,

Py = 2au} — au? + a(u} - wlus),
Py, = 2ot + auul,
Py = —auuy — au i,

(4.22)

P = auua,

where variable curvature effects have been neglected.

In the limit of rapid distortion, the approximate estimates of
the linear (rapid) part of the pressure strain-rate correlation,
o, may be compared with the results calculated directly using
rapid distortion theory. Such a comparison has been done by
Maxey (1982) for turbulent shear flows. Using the values of
w;u; predicted by rapid distortion theory for an initially isotropic
turbulence to evaluate the production terms in Eq. (4.22), the

values of o’ are found to be

al? = O(a?),

al? = 0(a?),

P = 0(a?),

oy = 0(a?),

o = 0(a?),
e (;2 + 0(a?). (4.23)

Journal of Applied Mechanics

A comparison of Egs. (4.20) and (4.23) reveals that in the limit
of rapid distortion, the pressure-strain-rate correlations pre-
dicted by the turbulence closure model of Launder et al. (1975)
have the same form as those predicted directly from rapid distor-
tion theory. In particular, if C; = 0.3, the value of ¢!?’ is
identical to the value of o, predicted by RDT.

4.3 Integral Length Scales. The transfer functions (4.9)
and (4.13) are used to calculate the integral length scales for
the distorted turbulence. The integral length scales L;, defined
by

1 o
Ljy=— T (X)H(x + re)dr,
wi; vo

(4.24a)
where e, is the unit vector of the x, coordinate axis, may ,be
expressed as a perturbation series in a:

Ly =L +alfl) + ..., (4.24b)

where

Ll = J; i ()i, (X + re)dr  (4.24¢)

My

is the integral length scale of the upstream turbulence in the
straight pipe, and

£l = e [f T (0T (% + reydr

/PRy

+f i, (X)) ;(x + re)dr — ijf:}RI,.;jl , (4.24d)
0

is the change in the integral length scale due to the effect of
centrifugal forces.

For an initially isotropic turbulence, the integral length scales
are given by

LiYy = LE’:E.}r = L%TI o LH?Z = L%,}z

= Lh = Li}h = L85 = Li¥h = 0. (4.25)
Equation (4.25) indicates that at order « there is no change in
the integral length scales in the directions parallel to the x, vy,
and s-axes due to the effect of centrifugal forces. The major
effect of centrifugal forces is to generate pure turbulent shear
in the x-s plane; this does not affect the integral length scales
in the x, y, and s directions. On the other hand, one would
expect the length scales in the directions parallel to the principal
axes of Reynolds stresses to change due to the distortion of the
eddy structure induced by the turbulent shear stress generated
by the effect of the centrifugal forces. In order to investigate
this, we consider a coordinate system (X,, £;, ¥3) where the &-
axis coincides with the x;-axis, and the axes £, and &, are in-
clined at angles of 45 and 135 deg, respectively, to the x,-axis,
and calculate the integral length scales E.-;.: defined by

(4.26)

1 i
L= —J. R,(r&)dr,
&l Yo

where

IR‘IJ(I'} = ﬂ;(x, f)a_;(x + r? :}v

i; is the component of the turbulent velocity fluctuation in the
X; direction, and &, is the unit vector in the % direction. For an
initially isotropic turbulence, these length scales are given by

Ly = L1 + § aesH(5) + 0(a?)],
Ly = b1 - § acsH(5) + O(a?)],
Ly = 5[ - 5 @esH(3) + 0(a?)],
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Lz = b1 — § aesH(5) + 0(a?)],
Ly, = L1 + O(a?)],

Lsia = bL[1 +  aesH(F) + O(a®)],

Lis = L[l + 3 aesH () + 0(a?)],

Ly = b[1 + ; aesH(5) + O(a?)],

Ly; = 1[1 -

where /, is the longitudinal integral length scale for isotropic
turbulence, and 1, = (4)/, is the transverse integral length scale
for isotropic turbulence. Equation (4.27) indicates that under
the dynamic influence of centrifugal forces, the longitudinal
integral scale, L, ,, in the %, direction increases and the longitu-
dinal integral length scale, Lss 3, in the £, decreases by an equal
amount, while the longitudinal integral length scale, Ly;,, in
the %, direction remains unchanged at order «. Thus, an initially
spherical eddy becomes elongated in the £, direction and flat-
tened in the £, direction under the effect of centrifugal forces
as it passes round the bend. The transverse integral length scales
L2, and Ly, in the %, direction decrease due to an increase in
the negative loop in the correlation spaces of Ry, (r, 0, 0) and
jo(r 0, 0). Similarly, .the transverse integral length scales
Li1s and L5 in the & direction increase due to a decrease in
the negative loop in the correlation space of R,,(0, 0, r) and
R22(0 0, r). In the £, direction, the transverse length scale
L 112 decreases, while fm ; increases by an equal amount. These
results show that the effect of centrifugal forces on the integral
scales of the turbulence differs from that of Coriolis forces due
to solid-body rotation. Coriolis forces due to solid-body rotation
tend to increase the length scales in all directions, especially
those along the axis of rotation (Ibbetson and Tritton, 1975;
Wigeland and Nagib, 1978; Bardina et al,, 1985). Centrifugal
forces, on the other hand, do not change the longitudinal integral
scale in the y-direction, which is the direction normal to the
plane of curvature; the integral scales increase in the direction
of one of the principal axes of Reynolds stress in the x-s plane,
and decrease in the direction of the other principal axis.

4.4 One-Dimensional Spectra. The transfer functions
(4.9) and (4.13) are used to calculate the one-dimensional spectrum

& aeSH(D) + 0(a?)], (4.27)

1 )
045, K;) = E_J' m(x,y,s,0)@(x,y,5,t+7)
] -1

X exp(iKiyt)dr, (4.28a)
which may be expressed as a perturbation series in a:
OiF, K3) = 0,;(K3) + a®,4(5, K3) + ..., (4.28D)
where

1 =
@)P.{F(KJ}:_J. m.!(x| Yy, 5, r)l?.r.\j(x*y! S‘:+T)
21 e

X exp(iKyT)dT (4.28¢)

is the one-dimensional spectrum of the turbulence in the up-
stream straight pipe, and

1
®|I,-;(§-, K';} = 2_ I:r H__,.‘,-(I, Y, S, f)lT“'(I, DR 1 4 + T)
¥iy o

X exp(iKir)dT

+f u_l.i(x-y;ﬁ'sf)ﬁs,j{I‘Y.S.f""-")

X exp (iKsr )d'r:| (4.284d)
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is the change in the spectrum due to the effect of centrifugal
forces.

For an initially isotropic turbulence, the changes in the one-
dimensional spectrum are given by

@I.u = @)Io'_v = ®I.m = @)l.x_\- = 81_,., = 0,

9l,x.\' = F(Kj)m(f)l (429)
where
F(K;) = —f - E(VK}, + KD dKy, (4.30)
0 (K 12+ K1

and E(K) is the dimensionless form of the energy spectrum
function defined in Eq. (4.16). Equation (4.29) indicates that
at order e, the only effect of the centrifugal forces is to produce
a change in the spectrum ®,, (K, ). This result may be contrasted
with the measurements of one-dimensional spectra obtained by
Ibbetson and Tritton (1975) in experiments on turbulence in
a rotating fluid. Ibbetson and Tritton (1975) found that the
normalized distribution of the energy spectra of the azimuthal
(streamwise) and vertical velocity components changed with
time. Equation (4.29), on the other hand, shows that centrifugal
forces do not induce changes in the energy spectra of the veloc-
ity components in the x, y, and s directions.

In order to evaluate the integral (4.30), it is necessary to
know the form of the energy spectrum function E(K) over the
whole wave number range. Here, E(K) has been taken to have
the commonly observed form

2 gglfﬁKd
277 (82 4 K2}I'NG .

where g, = 0.558 (von Karman, 1948), which reduces to the
Kolmogorov spectrum in the inertial subrange. Figure 2 shows
the variation of F(K;) with K; for the spectrum (4.31). For
small wave numbers, F(K;) is nearly constant. In the large
wave number range, the curve has a slope of —3, as expected.
It may be noted that the changes in the power spectral density
of the fluctuations u; and u; of the turbulent velocity fluctua-
tions in the directions of the principal axes of Reynolds stress
& and n are given by

0 =
(")L,m =

Thus, the spectrum @, ¢ increases, while @, ,, decreases. Since
the integral of the one-dimensional spectra @, and ©,,,
over the entire wave number range represent the change in the
mean-square turbulent velocity fluctuations u? and u2, respec-
tively, the result (4.32) is consistent with an increase in u§ and
a decrease in u2.

E(K) = (4.31)

F(K3)5H(5),

—F(K3)5H(5). (4.32)

F(k)

107 10" 10° 10" 10?
K

Fig. 2 Figure F(k) versus K
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5 Concluding Remarks

An asymptotic analysis of turbulent flows in the entry region
of a curved pipe shows that the turbulent fluctuations can be
described by the linearized Navier-Stokes equations if the con-
vection time is much smaller than the turbulent turnover time.
This condition coincides with the RDT assumption. The analysis
neglects the small boundary layer displacement effect on the
core flow near the entrance of a curved pipe and concentrates
on the centrifugal force effects on the turbulence structure in
the pipe core. Since the zeroth-order perturbation solutions are
the turbulent flow in a straight pipe and are assumed known,
the flow properties in the entry region of a curved pipe can be
related to these solutions.

The pipe curvature influences the turbulence in two ways.
One is contributed directly by the centrifugal forces and is of
first-order magnitude. The other is due to the variation of curva-
ture on the pipe cross section which ensures the geometric
similarity of the flows. For small turbulent eddies or in slightly
curved pipes, the variation of curvature is small and its effects
can be neglected. The dynamic effect of the centrifugal forces
is to generate a pure turbulent shear on the x-s and this effect
is cumulative. Thus, the original isotropic turbulence become
anisotropic due to linear effects. In this aspect, the effect of
centrifugal forces on an initially isotropic turbulence in the core
of the entry region of a curved pipe differs from the effect of
Coriolis forces due to solid-body rotation. In the latter case,
rotation acts on an initially isotropic turbulence only through
nonlinear interactions, and pure linear effects influence the dou-
ble correlations only if the turbulence is initially anisotropic.

For a flow path of variable radius of curvature, the superpos-
ition principle can be used to extend the current results. This
is because that the transfer functions derived in Section 4 are
governed by linear differential equations.
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APPENDIX

In order to understand the difference between the effects of
centrifugal forces due to streamline curvature and the effects
of Coriolis forces due to rotation on homogeneous and isotropic
turbulence from the standpoint of rapid distortion theory, it is
instructive to consider the linearized equations for the turbulent
velocity fluctuations in cylindrical polar coordinates. These
equations, relative to a stationary frame of reference, are

du, u, 10uy OJu
_+_ - —

ol _
ar r+r69+az 0,
o Uyiu, 2 __p
ot r a6 r ar’
i‘iﬁ+§£@‘_ﬂ+(ﬂ %)“‘,:_15_!’_
ot r of r ar r a8
., Uou__op A

ot r a6 dz

where (r, 8, z) are coordinates in the radial, azimuthal, and
axial directions, (u,, us, u,) are the components of the turbulent
velocity fluctuations in the r, @ and z directions, and the mean
flow is given by (0, Uy(r), 0), that is, the mean flow is in the
azimuthal direction. The corresponding Reynolds stress equa-
tions are
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— p represent the production of Reynolds stress, and D denotes dif-
Du; = —2u, —~ + P, ferentiation with respect to time. We note that if the turbulence

ar is isotropic, the production terms are given by
D;fi'__zug%'kplfm\ P"tpﬁﬂ:Pu:Pn=Ez=0’
r 2
_ prﬁ(%_%)ﬂ_‘ (Ad)
— ap r ar /) 3
Du; = —2u, 6_ + P,
z i — — a—
- - where ¢*> = u? + uj + u?l represents (twice) the turbulence
dp 1 ap kinetic energy.
Dty = —\ ug == + ~Up 25 | + Pray If the mean flow is one of solid body rotation, then U, = 722,

where {2 is the (constant) angular velocity, and the production
_ — term P,; = 0. Thus, if the turbulence is initially isotropic, all
dp the production terms in Eq. (A3) are zero at time ¢ = 0. Further-
9z more, if the turbulence is isotropic, the pressure-strain-rate cor-
relations are individually zero. Hence, all the terms on the right-
1 dp ap hand side of Eq. (A2) are zero at time ¢ = 0. Consequently,

Dugu, = - (; “: 58 + U a_z) + P, (A2)  the Reynolds stresses do not change with time, that is, rapid
distortion theory predicts that an initially isotropic turbulence

will remain isotropic at all times, as there is no linear mecha-

where nism to produce anisotropy. This agrees with the direct numeri-
4U, cal simulation by Speziale et al. (1987). This was noted by
P, = —;* U, Uy, Bardina et al. (1985), who reached the same conclusion by

considering the Reynolds stress equations in Cartesian coordi-
Uy 8Us\___ nates relative to a rotating frame of reference.
Pop = =2 (— + a—)u,na, On the other hand, if the mean flow is uniform, that is, if Uy
& = C, where C is a constant, as in the core of the entry region
of a curved pipe with uniform_inlet velocity conditions, the

P, =0, production term P, = (C/r)(g*/3) is nonzero. Hence, the

20, — U U\ — Reynolds stress uuy will change with time, and the turbulence
Po="2ui- ( 2 _") ul, will become anisotropic due to linear effects.

r r ar It is worth noting that if the mean flow is irrotational, with

constant circulation, that is, if U, = K/r, where K is a_constant,
the production term P,q is given by P,y = (2K/r*)(g*/3). In
= T g, this case also, the Reynolds stress &4y will change with time.
However, since the production term P,, for a constant-circula-
tion mean flow along a circular path is different from that for
= (U 9Us a uniform mean flow along a curved path, the magnitude of the
P 2 F Wiy, (Aa) — . .
Reynolds stress u,uy is different in the two cases.
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from a basic theoretical standpoint. It is argued that the singularity which arises in
the standard K— e model results from the use of an inconsistent freestream boundary
condition. The inconsistency lies in the implementation of a production-equals-dissi-
pation equilibrium hypothesis in conjunction with a freestream mean velocity field
that corresponds to homogeneous plane strain—a turbulent flow for which the stan-
dard K- € model does not predict such a simple equilibrium. The ad hoc adjustment
that has been made in the constants of the e-transport equation to eliminate this

singularity is shown to be inconsistent for homogeneous plane-strain turbulence as
well as other benchmark turbulent flows. An alternative means to eliminate this
singularity—without compromising model predictions in more basic turbulent
flows—is proposed based on the incorporation of nonequilibrium vortex stretching
effects in the turbulent dissipation rate equation.

1 Introduction

The calculation of stagnation point turbulent flows has a vari-
ety of important engineering applications in boiler tubes, gas
turbines, and ramjet combustors. Most of the earlier analytical
work on this subject (see Galloway (1973) and Gorla (1984))
was based on the use of algebraic eddy viscosity models that do
not allow for the detailed calculation of the turbulence statistics
which can play an important role in determining wall friction
and heat-transfer coefficients. Consequently, more recent work
on the subject has been based on the use of more sophisticated
two-equation turbulence models of the K— € type which have the
advantage of allowing for the direct calculation of the turbulent
kinetic energy and dissipation rate (see Strahle (1985) and
Strahle, Sigman, and Meyer (1987)). Unfortunately, a problem
with a singularity in the turbulent kinetic energy has arisen
when the traditional dissipation rate transport equation of the
K- ¢ model is applied to plane stagnation point turbulent flow.
Strahle (1985) and Strahle, Sigman, and Meyer (1987) intro-
duced an ad hoc modification of the constants in the e-transport
equation to eliminate the singularity. While this readjustment
of constants did alleviate the problem, we find it to be rather
unsettling since it yields an e-transport equation which is incapa-
ble of collapsing most of the homogeneous turbulence data that
is commonly used to benchmark turbulence models.

In this paper, it will be shown that the singularity in the
turbulent kinetic energy that occurs when the standard K-e
model is applied to plane stagnation point flows arises from the
use of an inconsistent freestream boundary condition. To be
more specific, the commonly used formulation of plane stagna-
tion point flow is ill-posed for the standard K- ¢ model since a
production-equals-dissipation equilibrium hypothesis is im-
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posed in the freestream in conjunction with a mean velocity
field that corresponds to homogeneous plane strain—a turbulent
flow for which this model does not possess such an equilibrium
solution. In homogeneous plane-strain turbulence, the turbulent
kinetic energy and dissipation rate obtained from the standard
K—-¢ model grow exponentially with time. This is consistent
with physical and numerical experiments on homogeneous
plane-strain turbulence which indicate the same type of expo-
nential growth (see Tucker and Reynolds (1968) and Lee and
Reynolds (1985)). The ad hoc adjustment in the constants of
the e-transport equation which has been used to eliminate the
singularity (Strahle (1985) and Strahle, Sigman, and Meyer
(1987)) will be shown to be inconsistent for homogeneous
turbulence since it erroneously predicts that plane-strain turbu-
lence is stable with no exponential time growth of the turbulent
kinetic energy. A more physically consistent means for eliminat-
ing the singularity in plane stagnation point flows—without
yielding erroneous predictions for homogeneous turbulence or
other benchmark turbulent flows—will be proposed based on
the inclusion of nonequilibrium vortex stretching effects in the
turbulent dissipation rate equation along the lines suggested by
Bernard and Speziale (1992).

2 The Standard K-e Model in Stagnation Point
Flows

The problem to be considered is that of plane stagnation point
flow with freestream turbulence as illustrated in Fig. 1. Outside
of a boundary layer of thickness &, the mean flow is assumed to
be irrotational and incompressible with a background turbulence
superimposed on it. This outer mean flow is taken to be of
the form (see Strahle (1985) and Strahle, Sigman, and Meyer
(1987))

=%, Uo= -y (1)
where V. = @i + U.j is the nondimensional mean velocity.
The mean velocity (Vv = @i + Uj) near the wall is a solution
of the Reynolds-averaged continuity and Navier-Stokes equa-
tions which take the dimensionless form
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Fig. 1 Plane stagnation point flow
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dx dy
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ox ady dx Re dx ay
P aTy,
E@+H@=——-—+LVZT}+%+& (4)
ox ay dy Re dx dy

where P is the mean pressure, Re is the Reynolds number, and
7, is the Reynolds stress tensor. For simplicity, since it will not
alter the critical conclusions to be arrived at in this paper, we
are considering the inner flow to be incompressible. The system
of Egs. (2)—(4) for the inner mean flow (i, 7) are not closed

" and must be supplemented with a turbulence model. In the K-
€ model, the Reynolds stress tensor is given by

K (on

: o,
Ty = —3Kb; + Cuf, — (ax- + a—;) (5)
j (]

€

where K is the turbulent kinetic energy, ¢ is the turbulent dissi-
pation rate, C, is a dimensionless constant which is usually
taken to be 0.09, and f, is a wall damping function that vanishes
at the wall and approaches one sufficiently far from the wall.
The turbulence quantities K and ¢ are determined from modeled
versions of their transport equations which, for the Lam-Brem-
horst (1981) model that was considered by Strahle and co-
workers as well as for other near-wall models, take the general
form

2
n’gﬁ+ﬁﬂ(=LV2K+i(Cﬂﬁ,K ﬂ()

ox dy Re ox € ox
d K* 0K

e — |+ P- 6

ay (C"f‘ € 6‘y) s o)

2
Eﬁ+ﬂ'a_€:vae+i CL.f;‘.‘i‘_?_E.
dx dy Re dx \ o, € 9x

8 (C.f. K* de € €
o+ Aot 7 et e +C‘_ '_"P_C,_ jiadel 1
Gy(g{ .c_ay) Sig fag 1)
where
a7;
('Jr‘= ‘:_r 8
T‘laxj (8)

is the turbulence production. In (6)—-(7), o, C,, and C, are
dimensionless constants which typically assume the values of
1.3, 1.44, and 1.92, respectively; f; and f; are wall damping
functions that vanish at the wall and approach unity sufficiently
far from the wall (see Lam and Bremhorst (1981 )). Sufficiently
far from solid boundaries, at high Reynolds numbers where the
molecular viscosity can be neglected, the modeled transport
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equations (6) —(7) reduce to those of the standard K— e model
of Hanjalic and Launder (1972).

The equations of motion (2) —(7) for stagnation point turbu-
lent flows are solved subject to the boundary conditions

_ 9K _
dy

L oK

7=7=K =—
¢ Re ay?

0, 9)

at the wall y = 0, along with the freestream boundary conditions
(for y = «)

0= ey, T=7T. (10)

1

K.=——¢
2/C,

= (11)

All of the boundary conditions except for (11) can be obtained
as a rigorous consequence of the Navier-Stokes equations as-
suming that &, U, and K are Taylor expandable near the wall.
Boundary condition (11) is obtained by a production-equals-
dissipation hypothesis, i.c., by assuming that
T=c¢ (12)
in the freestream based purely on an extrapolation of experimen-
tal observations for similar, although not identical, stagnation
point turbulent flows (see Strahle (1985), Strahle, Sigman, and
Meyer (1987), and Traci and Wilcox (1975)).
It will now be shown that the outer flow boundary condition
(11) is inconsistent with the mean velocity field (1). This outer
mean velocity has the following nonzero gradients:

om _, 9%

=, =—1
dx ay

(13)

and, hence, corresponds to the case of homogeneous plane-
strain turbulence ( see Tucker and Reynolds (1968) and Rogallo
(1981)). It is now well established that homogeneous plane
strain-turbulence is an unstable turbulent flow; the turbulent
kinetic energy, dissipation rate, and length scales grow exponen-
tially with time.'

As an illustration, the time evolution of the turbulent kinetic
energy (nondimensionalized by its initial value) taken from
the direct numerical simulations of homogeneous plane-strain
turbulence conducted by Lee and Reynolds (1985) is shown in
Fig. 2. These results are suggestive of an exponential time
growth of the turbulent kinetic energy which has been postu-
lated based on alternative arguments (see Rogallo (1981)). The
commonly used K— ¢ model (where C,, = 1.44 and C,, = 1.92)
properly mimics this behavior as can be seen in Fig. 3. These
computations, which were conducted using a fourth-order accu-
rate Runge-Kutta numerical integration scheme, indicate that
after an early decay (the turbulence was initially undergoing
an isotropic decay), the turbulent kinetic energy then grows
monotonically and becomes unbounded in the limit as r = . It
can be shown analytically that the long-time growth of turbulent
kinetic energy predicted by the traditional K— e model is expo-
nential (see Speziale and Mac Giolla Mhuiris (1989)).

For general homogeneous plane-strain turbulence, with con-
stant mean velocity gradients

3% (T 0)
ax; 0 -T

(where T is the strain rate), the standard K—¢ model yields
transport equations for K and ¢ that simplify to

(14)

! It is precisely this exponential growth of the length scales in numerical simula-
tions of homogeneous plane strain turbulence that force a termination of such
computations after relatively short elapsed times (see Rogallo 1981).
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Fig. 2 Time evolution of the turbulent kinetic energy taken from the

homogeneous plane-strain numerical experiments of Lee and Reynolds
(1985) (I'Ky/ €0 = 10)

K K?
i£—=4C,,—]“2-- €
dt €

de &
= = 4C,C,KT? - C,—.
dt e K
These equations can be manipulated into the alternative dimen-
sionless form

(15)

(16)

dK* I'K €
={ 40 -2 )k 17
dr* ( " e FK) {n
A2 _acici-1-ca- (L) a8y
d*\rK) 7 @ r'K
where ¥ = I't, K* = K/K,, and
k=S (i) (E_"SE)K* (19)
€p 'K €g

given that (- ), denotes the initial value. Equation (18) has an
equilibrium solution of the form

FK l /2
EIRC
o "
(in the limit as r* — o) where
a = —g‘z — : (21)
el

which is approximately two for the standard K- ¢ model.” Then,
from Egs. (17) and (19), it follows that for t* > | we have

K*'«-cxp[z\/%(aw l)r*] (22)
¥ ~ epr:Z\{g (o — l)r*] . (23)
23

It is therefore clear that the traditional K- ¢ model predicts an
exponential time growth of the turbulent kinetic energy and
dissipation rate where a structural equilibrium is reached with
respect to their ratio—the turbulent time scale K/e (in fact,
I'K/e has a universal equilibrium value in the limit as ¢ — o«

21t is a simple matter to show that @ is the equilibrium value of the ratio of
production to dissipation and that the fixed point (20) is a stable node of the K-
e model (Speziale and Mac Giolla Mhuiris (1989)).
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that is completely independent of the strain rate I" as well as
the initial conditions K and €;).

As shown above, the standard K—e¢ model (where e > 1)
predicts an exponential time growth of the turbulent kinetic
energy and dissipation rate for plane strain turbulence which
appears to be consistent with physical and numerical experi-
ments. On the other hand, if we take C,, = C,, as suggested by
Strahle ( 1985) and Strahle, Sigman, and Meyer ( 1987), the K—
¢ model erroneously predicts a stable flow (with P = €) where
both K and € approach a finite asymptote within a few eddy
turnover times. This solution is of the form

1

- .
20YC,

where ¢.. is bounded and is determined by the initial conditions
and_the strain rate (it can be shown that e./e; =
(ZJC_FFK.;!C{,)‘” where f = C,/(C,y — 1)). It is clear that
if Eq. (24) is nondimensionalized it becomes identical to
Eq. (11).

Now, we will return to the problem of stagnation point flow.
By a Galilean transformation

(24)

y = Uy (25)

(where U, is the characteristic mean velocity ), the temporally
evolving version of homogeneous plane-strain turbulence can
be converted to a spatially evolving problem (in the coordinate
y) governed by the equations
22
4C gL

K _
dy e

de €?
Uo a = 4C,|C,‘Kr2 - 2 E .

U, (26)

="

(27)

This spatially evolving version of the problem (which is actually
the way that the physical experiments are conducted; see Tucker
and Reynolds 1968) has the same solution as the temporally
evolving version if we set

t* = = . (28)
Uo
As before, the standard K-¢ model predicts an exponential
growth of K and e in y which properly mimics the experiments;
the modified K- ¢ model where C,; = C,, erroneously predicts
a stable flow with ? = € where K and ¢ approach finite asymp-
totes as y — o (see Fig. 4). These results have a direct bearing
on the stagnation point flow problem. The boundary conditions
(10)—(11) must be matched in the limit as y — . This is
usually accomplished by marching in the y-direction from the
wall starting at y = 0 (see Fig. 1). However, as can be seen
from the previous analogy, if we march in the y direction from
the wall with velocity Uy, the standard K— e model predicts an

0.0 1 | 1 L

Fig. 3 Time evolution of the turbulent kinetic energy for homogeneous
plane strain predicted by the standard K-e model (I'Ky/e = 1)
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tt

Fig. 4(a) TKo/eo < 2VCps

f'

Fig. 4(b) TKo/€ = 3VC,,

+
Fig. 4(c) TKo/eo > 3VCp
Fig. 4 Time evolution of the turbulent kinetic energy predicted by the

maodified K-e model (where C,; = C,;) for homogeneous plane strain

exponential growth in the turbulent kinetic energy and dissipa-

tion rate:
K*wepr:Z [Sa (o — I)ll:] (29)
o Uo
e*wexp[Z ’EE(:::— l)y_F] (30)
o Ua

for yI'/U, = 1. If a freestream boundary condition is used
where K., and €. are bounded, an ill-posed problem results.
Although the singularity in the plane stagnation point flow
problem can be eliminated by setting C,; = C,z, it is highly
undesirable to do so since this results in a miscalibration of the
K—¢ model for homogeneous turbulence to the point where
qualitatively incorrect results are predicted. Furthermore, this
recalibration yields a reduction of & from approximately two
to one which substantially degrades the predictions of the K-
¢ model for inhomogeneous benchmark turbulent flows such
as free jets and the backstep problem (see Thangam (1991),
Younis, Gatski, and Speziale, 1994 ). Consequently, the specific
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quantitative results obtained from this alternatively calibrated
K— ¢ model for stagnation point flows are likely to be question-
able. Rather than rendering the problem well posed by an incon-
sistent recalibration of the model, it would appear to be prefera-
ble to consider an alternative formulation of the problem that
is not intrinsically ill-posed. Such an alternative formulation
would require an outer flow with a mean velocity field that is
compatible with a bounded turbulent kinetic energy and dissipa-
tion rate that are statistically steady. One such example would
be stagnation point flow that arises about a semi-infinite Ran-
kine solid (see Fig. 5). For this problem, the outer mean velocity
is obtained by the superposition of a uniform stream with a
source located at point P (a velocity field that can be written
in closed form). It is a simple matter to show that in the limit
as r—+

T, =0 (31)

for this flow. The mean velocity (31) has no spatial gradients,
and hence no source for turbulence production; consequently,
any background turbulence will decay yielding equilibrium val-
ues of

e = Us,

K.=0, ¢.=0 (32)

in the limit as » — . In addition, within the turbulent boundary
layer there will be a region where production is approximately
balanced by dissipation (the logarithmic region), so that (11)
would be an appropriate boundary condition therein. No prob-
lems with singularities would arise with this alternative formula-
tion of stagnation point flow that is more realistic from an
aerodynamic standpoint.

3 An Alternative K- € Model With Vortex Stretching

While the ill-posedness of the stagnation point flow problem
can be overcome by considering more realistic aerodynamic
configurations, it would nonetheless be useful to have the ability
to compute idealized cases such as plane stagnation point flow
with freestream turbulence. This would be worthwhile if a more
physically consistent means were used to remove the singular-
ity. One possible approach is to incorporate the effect of non-
equilibrium vortex stretching in the dissipation rate transport
equation, consistent with the theory of self-preservation (see
Bernard and Speziale (1992) and Speziale and Abid (1993)).
When this nonequilibrium vortex stretching effect is incorpo-
rated, a production-equals-dissipation equilibrium is obtained
for plane-strain turbulence in the limit as ¢ — o: a feature that
removes the singularity in the plane stagnation point flow prob-
lem since a bounded turbulent kinetic energy and dissipation
rate are predicted.

For homogeneous plane strain turbulence, the dissipation rate
equation with this nonequilibrium vortex stretching effect is
given by (see Bernard and Speziale, 1992)

de €l ¢’
E — 4C£|C“H2 + C{:;R;“z ‘IE == €2 E

/
=

Fig. 5 Stagnation point flow for a semi-infinite Rankine solid

(33)
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where R, = K*/ve is the turbulence Reynolds number and C.,
is a constant. The term containing C.; arises when there is
an imbalance between the production of dissipation by vortex
stretching and the destruction of dissipation by viscous diffu-
sion. When (33) is combined with (15), we obtain the transport
equation

d (e _ _ waf €\
qr (FK) 4C(Cy 1) + CaR; (TK)
=G~ 1)(—E ) (34)

from which the fixed point can be obtained.

Equations ( 15) and (33) were solved by using a Runge-Kutta
numerical integration scheme. The initial conditions, which cor-
respond to an isotropic turbulence, are taken to be ['Ky/e; = 1
and R,, = 100. Figures 6 and 7 show the time evolution of K*
and ¢* for a range of different values of C,;. The inclusion of
vortex stretching has little effect on the short-time solution, but
has a dramatic effect on the long-time behavior of K* and €*.
In fact, an equilibrium state is reached where the turbulent
kinetic energy and dissipation rate saturate to bounded equilib-
rium values after a significant period of exponential growth.
The saturation values are obtained by setting the right-hand
sides of (17) and (34) to zero:

K NE (c(z - C‘..)"(FK.,)

B 20 Te Tyl (2 (35)
K, Ry Ca €o
C_'”:ﬁ(__az_ct'y(zﬁ):. (36)
€0 R Cs €

The relations (35) and (36) indicate that the value of C,; deter-
mines the saturation level of K and e.

Using (35) and (36), the following equilibrium values are
obtained:

60

40

K*

20

Fig. 6 Time evolution of the turbulent kinetic energy for homogeneous
plane strain predicted by the K- e model with vortex stretching (I'Ko/e
=1)
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ti

Fig. 7 Time evolution of the dissipation rate for homogeneous plane
strain predicted by the K-¢ model with vortex stretching (I'Ky/e, = 1)

T'K 1
22 i 37
( € ),, 2C, 2
(f) =1 (38)
E =
R. = (M)Z (39)
" C(J l

These results demonstrate that a K— e model with vortex stretch-
ing predicts an equilibrium state where production is equal to
dissipation, Therefore, the singularity in the K—e model for
stagnation point flow would be eliminated by this modification.
However, unlike the ad hoc change in the constants discussed
above, this modification yields results that are completely con-
sistent with physical and numerical experiments on homoge-
neous plane strain turbulence. K and € grow exponentially until
't = 30—an elapsed time that is far larger than any that have
been considered in previous experiments. As discussed by Ber-
nard and Speziale (1992), it remains an open question as to
whether homogeneously strained turbulent flows ultimately sat-
urate to a production-equals-dissipation equilibrium. The only
thing that is beyond question is that they are unstable flows—
where there is an exponential time growth of K and ¢—for, at
least, several eddy turnover times.

4 Concluding Remarks

It has been demonstrated in this paper that the problem of
turbulent plane stagnation point flow, as it is usually formulated
with two-equation models, constitutes an ill-posed problem.
This ill-posed formulation arises since the outer mean flow
corresponds to a homogeneous plane-strain turbulence for
which the standard K- ¢ model predicts a turbulent kinetic en-
ergy and dissipation rate that grow exponentially with time.
This precludes the application of a production-equals-dissipa-
tion equilibrium boundary condition in the freestream and ren-
ders the problem singular.
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There is no doubt that the singularity in the standard K—¢
model for plane stagnation point flow can be eliminated by
setting C,; = C,, in the dissipation rate transport equation as
suggested by Strahle (1985) and Strahle, Sigman, and Meyer
(1987). However, in the opinion of the authors, it is highly
undesirable to do this since the recalibrated model yields com-
pletely incorrect results for most homogeneous and some inho-
mogeneous turbulent flows (e.g., the erroneous prediction that
plane strain and plane shear flow turbulence are stable, in con-
tradiction of the results of physical and numerical experiments,
and the degradation of results for free jets as well as the backstep
problem). An alternative formulation of the stagnation point
flow problem based on a semi-infinite Rankine solid was dis-
cussed which is well posed for the standard K— ¢ model (i.e., no
singularities would arise from the implementation of boundary
conditions ). Of course, other alternative formulations of turbu-
lent stagnation point flows exist which are also well posed for
two-equation models (for example, flow past a circular cylinder
or the three-layer model of Traci and Wilcox (1975) for plane
stagnation point flow). It is true that while these alternative
formulations involve more realistic aerodynamic configurations,
they are not quite as easy to compute since a similarity solution
may not exist. Hence, an alternative means to remove the singu-
larity in plane stagnation point flow was proposed based on a
modification of the dissipation rate transport equation that in-
cludes nonequilibrium vortex stretching. Unlike the modified
dissipation rate equation where C,; = C,, this alternative pro-
posal yields results that are not in contradiction of any existing
results from physical and numerical experiments on homoge-
neous turbulence. If we are to obtain more reliable predictions
of turbulent stagnation point flows, we must avoid making ad
hoc adjustments in the constants of turbulence models which
render incorrect predictions for basic benchmark turbulent
flows.

Computations of plane stagnation point flow using the vortex
stretching modification proposed herein were not presented
since they are beyond the scope of the present paper for a
variety of reasons. There are serious questions in regard to the
near wall modeling that must first be addressed; this constitutes
a nontrivial issue that can have a profound effect on the solution
of wall bounded turbulent flows such as the plane stagnation
point flow problem. Furthermore, state-of-the-art two-equation
models should be used that have a more physically based repre-
sentation for the Reynolds stress tensor than the isotropic eddy
viscosity model that forms the basis for the standard K- ¢ model
(the shortcomings of the standard K— e model are well known in
this regard; cf. Speziale 1991). Such models have an anisotropic
eddy viscosity with strain-dependent coefficients that are sys-

100 / Vol. 63, MARCH 1996

tematically derived from a full second-order closure (see Gatski
and Speziale, 1993 ). A computational study of the plane stagna-
tion point flow problem that properly accounts for these im-
portant physical effects will form the basis of a future paper.
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Dynamic Stability of a Rotor
Filled or Partially Filled
With Liquid’

The dynamic stability of a high-spinning liquid-filled rotor with both internal and
external damping effects involved in is investigated in this paper. First, in the case
of the rotor subjected to a transverse harmonic motion, the dynamic pressure of the

liquid acting on the rotor is extracted through a planar flow analysis. Then the
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Introduction

In engineering, for various reasons liquid is often enclosed
in rotors such as fluid-filled centrifuges, fluid-cooled turbines,
and spin-stabilized satellites. When a liquid-filled rotor spins
nonperturbedly, the free surface of the liquid forms a cylinder
concentric with the rotor cavity and the liquid and the rotor
rotate as one solid body. When the rotor is perturbed, a perturba-
tion of the liquid will also be excited and in turn affect the
perturbed motion of the rotor. Many experiments have shown
that the liquid contained in a rotor not only changes the natural
frequencies and critical speeds of the empty rotor, but also
may lead to the instability of the system. Such a fluid-structure
coupling problem is more complicated than others because the
perturbed motion here is relative to a steady spinning.

The instability of a liquid-filled rotor was first noted experi-
mentally by Schmidt (1958 ) and Kollman (1962). As the rotor
they investigated was partially filled with liquid, they thought
that it was the fluctuation of the free surface of the enclosed
liquid that introduced the instability. Then, Wolf (1968) and
Hendricks (1979, 1981, 1982) performed analytical investiga-
tions. Wolf regarded the condition for ruling out the translatory
circular whirl as the instability condition, which is not strict
in the mathematical sense. Hendricks and Lichtenberg (1982)
improved Wolf ’s analysis by considering the liquid viscosity
and the tilting of the rotor and dealt with three-dimensional
problems.

The present work gives a complete analytical approach to a
two-dimensional liquid-filled rotor:

1 The analytical expression of the dynamic pressure of the
liquid acting on a rotor subjected to a transverse harmonic mo-
tion is given, then the general equation of perturbed motion for
the liquid-filled rotor is derived.

2 Directly from the equation of motion, the exact criteria
for stability and the stability boundaries are given analytically.
The instability threshold speed, as well as the threshold internal
and external damping, are obtained.

Equation of Perturbed Motion of the Enclosed Liquid

A rigid cylinder mounted symmetrically in the middle of a
massless shaft is shown as Fig. 1. When the cylinder spins at

! The project was supported by the Foundation for Developing Chinese Educa-
tion and Science and the Chinese National Science Foundation.
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publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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equation of perturbed motion for the liquid-filled rotor is derived. The analytical
stability criteria as well as the stability boundaries are given. The results are exten-
sions of those given by previous literature.

a constant rate £ without perturbation, under the action of the
centrifugal force the contained liquid is uniformly attached to
the inner wall of the cylinder and spins synchronously as a
rigid body. The dynamic stability of such a liquid-filled rotor
is discussed in this paper.

In Fig. 2, a fixed Cartesian coordinate system O-xyz, a body-
fixed Cartesian reference system C-£n(, and a body-fixed cylin-
drical coordinate system C-rf are established, where the z-axis
coincides with the spinning direction and C is the center of the
cylinder. The perturbed velocity of the flow at an arbitrary point
(r, 8) is denoted as ury + vfy. The flow pressure is P. Referred
to the fixed system, the parallel perturbed motion of the cylinder
is

re = x(Ni + y(1)]. (D

The equation of motion for the inviscid incompressible liquid
relative to the rotational system is such that

§E+{VHWVF+MQXVJ=—1VP—m (2)
at p
and the continuity equation is
divV,=0 (3)

where V, is the relative perturbed velocity and a, is the con-
vected acceleration given by

a=a+0x(QxXr)=a — Q% (4)
where a, is the translatory acceleration of the center
a. = ¥(Di + y(1)]. (5)
We set
P=Ca(rt - + P (6)

here (p/2)§22(r* — b?) is the pressure of the liquid under steady
spinning, whereas P represents the perturbation pressure. In
keeping with the hypothesis of small perturbation, both V, and
P are first-order small quantities. With higher order quantities
neglected, Eq. (2) is linearized to

av,
ot

Taking the vorticity of (7) leads to (8/d¢)(rot V,) = 0. As the

+zmxv,>=-iw—av (7)
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Fig. 1 Rotor system (side view)

system is initially nonperturbed, we then obtain rot V, = 0,
Therefore, though the steady spinning flow of the liquid is rota-
tional, the perturbed motion is irrotational. Taking the diver-
gence of (7), we obtain
AP =0 (8)

where A is the Laplace operator.

The boundary conditions are next to be specified. On the
solid surface, we have

(9)

For the cylinder partially filled with liquid, during perturbed
motion the free surface is defined by » = b + 7(#, t), here b
is the radius of the nominal free surface for a nonperturbed
rigid rotation and 7 is also a first-order small quantity. From
the condition that the total pressure at the free surface must be
zero, we obtain P|,_, = —pQ*n. Then, from u|,., = (dn/
dt), the boundary condition on the free surface should be

or
ot |,
The perturbation flow is governed by (7)-(10).

)= = 0.

= —pQ%ul,o. (10)

Dynamic Pressure of the Liquid Under the Transverse
Harmonic Motion of Rotor

Suppose that the rotor is subjected to a transverse perturbed
motion given by
x(t) = Ae™', y(t) = Be™ (11)
where A, B, and w are all complex numbers. Physically, only
the real parts of (11) are of sense. For convenience, we are first
concerned with the transverse motion in the direction of x-axis
(A #0,B =0). From (7) and (8) we have

ri(,f’_ﬁ)Jrﬂ_g
"or\"ar) T 62

4 @ -2 = — l g 29 _!_sz[ef(u.-+ﬂr+ﬂ} + e:‘[wr—nf—ﬁ']] =
at paor 2
é + 200 = — lG_P_ g _‘_sz[ei(wmms) i e[(ul’—ﬁr—-.‘i)]
| Ot progd 2
(12)
Setting
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u = ul{r)ei(‘nﬂ 483 + uz{r)e:'rm—[?:—ﬂ}
V= Ul(r)ei[wi-ﬂu 5] + Uz(r)ei(ul—m—ﬁ')

P = Pl(rJei(urH?&@) = Pz{r)ei(m—n.-—a}

(13)

and inserting them into (12), after a rather lengthy deduction
(see Appendix), we have the perturbation pressure distribution
on the inner wall of the cylinder as

F{d, 9) — %pawz[Mm""”m”m + Mze.-'(ux—m—#)] (14)

where
_ 2(0 4+ w)? — w?
(1 + )0+ w)? — w?’
_ 2(0 — w)? = Wl
T+ )R- w) - W
_a*+b?
e — b2’

(15)

(16)

Similarly, when the cylinder is subjected to a transverse har-
monic motion in the y direction (4 = 0, B + 0), the pressure
distribution on the inner wall of the cylinder can be obtained
as

F(ﬂ, 9) = % pawzl -'Ml ea‘(m+!h+6) £ Mzei[w:—ﬂl—ﬂlj‘ {17)

Therefore, the total perturbation pressure distribution under the
general motion (11) is such that
P(a, 8) = 3paw’[(A — iB)M,e"“ ¥+

+ (A + iB)Mye" =91, (18)

The components of the total force of the liquid acting on the
cylinder in the directions of the x and y-axes are, respectively,

2n
F, = laf P(a, 8) cos (i + 6)db
0

2%
F, = LaJ. P(a, 6) sin (2 + 8)df (19)
1]

where L denotes the length of the cylinder. Inserting (18) into

the above expressions, we have
] — A fuit
i(M, Mz)][ e ] 20)

F1 1 [ M +M,
=—mw?*| . ]
Fy 2 (M, —M,) M, + M, Be™!

where
(21)
which denotes the mass of the liquid to fully fill the cavity.

m, = pma*L

]
~
NS - “
£,
Ot
X .}"
0 1

Fig. 2 Definition of coordinate systems (top view)
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Formula (20) is the general representation of the liquid acting
force. The formula shows that besides a force collinear with the
displacement, a circulatory force is also excited. If the cylinder
executes a circular whirl, i.e., B = —iA, we have

F. = m.w*M,A cos wt
(22)

then the liquid acting force is collinear with the displacement
and no circulatory force appears. This special case has been
solved by Wolf (1968) and Hendricks (1986).

F, = m.w?M,A sin wt

Equation of Motion for Rotfor and the Dynamic
Stability

We consider the general case where both the internal and
external damping effects are involved in. Referred to the fixed
coordinate system, the equation of perturbed motion for the
rotor is such that

WG 57 evell]
[ea FIGI-[7] @

where m,, k, C,, and C, are, respectively, the mass of the empty
cylinder, the stiffness of the shaft and the internal and external
damping coefficients. The internal damping force is assumed
to be in direct proportion to the relative perturbed velocity

D, =-C(V.—-QXr)

= —Gl(x — )i + (¥ + Qx)j] (24)

which is a simple equivalent model for accounting for the fluid
viscosity. When the center of the cylinder also rotates with
angular velocity €2, the cylinder and the contained liquid rotate
synchronously around the z-axis and the viscosity of the liquid
does not work. The right-hand side of (23) represents the force
of the liquid acting on the cylinder. We are now concerned with
the dynamic stability of (23). Set

x =Ae", y= Be™ (25)

where A, B, and w are all complex numbers. From (23), recall-
ing (20) we obtain the following eigenvalue problem

i MR

a= [m,+%(Ml+Mz] w?—=i(C, + CHw — k

(26)

where

(27)
B = %mc(M. — My)w? + CQ.

The corresponding characteristic equation of (26) is a® + §7
=0, ie.,

a = xif. (28)
Inserting (27) and (15) into (28) and denoting
9 k
F = i 3 S=— » W% —
wy i m,
2 Ci
§= g s (29)
m, 2muwy 2muwy

we have the nondimensional characteristic equation as
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(y + WF* + [+28(1 + y + 2p) — 2i(C. + C)y]F?
+ [S2(1 + 7 + 2u) — y T 4iS(C. + C)(1 + y)
F 2iCySIF? + [F2(1 + )8 — 2iS*(C. + C)(1 + y)
— 4iC,(1 + y)SYIF + [-S%(1 + )

F2C(1 + v)8*1=0. (30)

For an undamped system, (30) degenerates into the following
characteristic equation with real coefficients as

(v + W(EF)* +25(1 + 7 + 2p)(=F)?
+ [S%(1 + v + 2p) — YI(£F)?

—2(1 + ¥)S(xF) — S*(1 + y) =0. (31)

Taking the positive sign of F in the above equation leads to the
characteristic equation given by Wolf (1968). Equation (31)
shows that if one eigenroot F is a complex number, its conjugate
number must also be an eigenroot, then one iF has positive real
part and the system is unstable. So an undamped liquid-filled
rotor cannot have the asymptotic stability. If all the eigenroots
F extracted from (31) are real numbers, the system is stable
and the whirl modes of the rotor can be obtained from (26) as

[;] ) [;:]

which represent the forward and backward circular whirl, re-
spectively (Zhang, 1990). Therefore, we have proved theoreti-
cally that it is reasonable for Wolf to regard the condition
whether the circular whirl can exist or not as the criterion for
stability. This criterion, however, is effective only for undamped
systems. If damping occurs, we should directly discuss Eq. (30)
by means of the generalized Routh-Hurwitz criterion (Porter,
1990). Denoting the coefficients of F"~/ as b; + ic;, we have

by=7v+p b+ *2(1 + vy +2p)S,

b, =81 +vy+2u—vy
by = ¥2(1 + ¥)S, ba=—-S*(1 + )
=0 ¢ =-2(C + C.)y,
¢ = F25(2(C. + C)(1 + y) + Ciy]
c; = =28%(1 + ¥)(C. + 3C;), ¢ = F2C(1 + y)S°.

According to the generalized R-H criterion, the condition for
stability is that all the even-order principle minors of the follow-
ing Hurwitz matrix, Ay (k = 1, 2, 3, 4), should be positive

Cg € €3 C3 Cq4 0 0 0
by by by by b, 0 0 0
0 Cg € €2 C3 C4 0 0
o 0 by by by by by 0 0
8= 0 0 Chp € Cr C3 C4 0
0 0 bo b| bz b3 b4 0
0 0 0 e ¢ € €3 ¢4
LO 0 0 by by by by by

After some manipulations, we obtain
By =2(C + Gy + WY
Ay =4(y + W(CIY* + S’y — DBy + 4)]
+ CHY' = S2(y? + 4u + vu — 4¥7w)]
+2C.Cily* + 4uS*(y* = D]}
A= —88*(y? = D(y + wp{CiI[Su(y — 1)
~(5y*+ 20y + 16)] + CIC[58%u(y — 1) — 11y?

(32)
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+ 52y + 48)) + C,C2[S%(57* + 20y
+ 16 + 2lp + 20yp) — (7y* + 44y + 48)]
+ CHS*(y* + 129 + 16 + 17u + 12yu)
= (y* + 12y + 16)]})
Ay = 16(y* — 1)*p*(y + p)S{-Ci(1 + )
=2C:C(1 + ) + CICHS*(1 + v +2u) — ]
+ 2C.C} + CH[1 — 8*(1 + w)1).
The stability of the system is determined by A; > 0 (i = 2, 4,

6, 8).
We then consider the following cases:
Case 1. Only external damping occurs, C. #= 0 and C, =

0. Equation (32) is reduced to
Ay =2C.(y + wy
Ay =4C(y + Wiy + Suly — DBy + 4)]
As = 8CISH(y? — I)(y + )
X p[5y* + 20y + 16 — S%u(y — 1))
Ay = —16CIS" U (y + w)(y + 1)(y* = 1)2

As Ag < 0, a liquid-filled rotor with external damping must be
unstable. Such a conclusion has been obtained by Hendricks
(1981).

Case 2. Only internal damping occurs, C, = 0 and C; # 0.
Then (32) is reduced to

Ay =2C(y + Wy
Ay = ACHy + Wy’ =S¥ + 4p + yu — 4y*p)]
Ag = =8CIS*(y? — 1)(y + wulS*(y* + 12y + 16
+ 17u + 12yp) — (2 + 12y + 16)]
Ay = 16C{S°(y? = 1)%p2(y + w1 — S*(1 + p)].
From A; > 0, the condition for stability is given by
Ay =00 SHY - 4yu 4+ yu +4p) < y°?
1

17 + 12y
Ay 12y + 16

Ag>0: SP<

As >0 S2 <

l+p’

In Fig. 3 the illustrative curves A; = 0 are plotted and the
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region A; > 0 are indicated. The condition for stability, which
satisfies all of the above three inequalities, is Az > 0, i.e., S2
< 1/(1 + p), or alternatively

k

m, + m,

Q<O Q= (33)

where (* denotes the fundamental frequency of the rotor fully
filled with liquid. ©* is the instability threshold speed for a
liquid-filled rotor under the action of internal damping. Once
Q > Q% the system loses stability. This conclusion is first
obtained.

Case 3. Internal and external damping occurs simultane-
ously, C, # 0, C; # 0. We set

n = C//C.. (34)
From A; > 0 we obtain the condition for stability as
Ay > 00 S0y — 4y + yp + 4u) — Spu(y® - 1)
—uwly = DBy +4)1 < y*(1 +n)?
Ag>0: S < (v + 12y + 16)
+ %7y’ + 44y +48) + n(1ly* + 52y + 48)
+(5y*+ 20y + 16) }/ {n*(y* + 12y + 16
+ 17+ 12yp) + n*(5y% + 20y + 16 + 21y
+ 20yp) + (5 + D(y = 1)}
: +17;J;2,u - nz)
> (1+ 21 +y = n?).

Figure 4 plots the curves A, = 0 and the regions A; > 0, where
the parameters are taken from Wolf (1968), ¥ = 2.6, u = 0.206.
The stability condition satisfying all above three inequalities is

Ag >0 S*(I1 + ,u)qz(

n*>1+y
(L +9)(n*—~1=9)

- (35)
(1 +ﬂ)ﬂz('»?2" 1 +'y+2,u.)
1+ p

S*<f(n) =

Therefore, only when the damping ratio n > VY1 — r, there exists
a stable region. For each n greater than V1 — r, there is a thresh-
old speed * = wyf(n). If Q > OF, the system must be
unstable. From (df(n)/dn) = 0, we can extract the maximum
threshold speed as
¥+ (@ — 1 — y)n*> = 2(1 + y)np*?
tal+y)p*=0 (**>1+y)

O* = weV f(n*)

where @ = (1 + v + 2u)/(1 + p). For the aforementioned
parameters, we have

Q% = 1.2154w, n* = 2.40595.

The stable region (35) can be approximately represented by the
following rectangular region:

nP>1+y
§2 < 1
14+ u

(36)

which is a sufficient condition for stability.
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Conclusions

In this paper the dynamic stability of a two-dimensional lig-
uid-filled rotor under the action of internal and external damping
is analyzed. The cases that only external damping occurs, only
internal damping occurs, and internal and external damping
occurs simultaneously are discussed separately. For each case
the analytical criterion for stability is derived. The analysis
shows that the external damping is always a destabilizing factor
and the internal damping, however, has certain stabilizing effect.
For a general case there exists an instability threshold speed.
Once the rotating speed exceeds the threshold speed, the system
loses stability and can never be stabilized again by adjusting
the parameters. Such an instability threshold can be approxi-
mately set as 1/(1 + p). All the above results can be regarded
as the extensions of previous related conclusions.
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APPENDIX

The Solving of (12)

According to the superposition principle for linear equations,
we can solve the terms of ¢/ and ¢~} geparately.

Journal of Applied Mechanics

First, we seck the solutions u,, v,, and P;. Substituting (13)
into (12), we have

d*P dP

r? -—drzl + r_drl -P =0 (37)

1dpP, 1
iou, — 20 = — = + = Aw? 38
iou, vy S (38)
2Qu, + iov, = - ik + 14,2 (39)

p2 2

where o = w + (2. From (37) we have

|(r}"—C|l ‘{‘9 (40)

Substitutions of the above expression into (38) and (39) lead
to

= [(a+2mc. +(2Q—a}%

= @0 - o)
- % pAw? (o + ZQ)]
1 C,
oy PUNRE LT e S P UL + 2 — ] - .
vy A0 — o9 [(0 WG, — (2 o) e

+ %psz(o' + ZQ)] ;

The boundary conditions (9) and (10) now become

ioP(b) = — pQ?bu (b)), wu(a) =0,

( Q2 0\ G,
ST MY C + e e D]
MY LU ST gy Y

¢ pAw 0?2
2 0 -0

ie.,

0 -0 "A“’( +20)

(o +2)C, +

a!

which yields

Psz at )
Ci= ~
' 2(200 - QF + o%y) [az yx (20 +0) - Q2
& 25,2
C,=— pAw a‘h

20 + o).
T Ry T ey - e L

Inserting the above expressions into (40) leads to

1 20 + w)? - w?
P| =—pA 2
(@) = A @+ @) —

Similarly, we have

2( — w)? — w?
(1 + y)(2 — w)? —

1
Py(a) = > pAwa

Then (14) is obtained.
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Introduction

The stability of a column of liquid resting on a column of
air in a vertical tube was investigated by Dussan (1975), Joseph
(1976), and Huh (1969). The upper end of the tube is closed
and the interface at the bottom of the liquid column is flat. The
weight of the liquid column is supported by the air pressure
which is greater than the pressure at the upper end of the tube
by an amount equalling the hydrostatic pressure corresponding
to the column height. It was deduced from energy analysis that
the flat interface is conditionally stable if 0 < G < (3.83171)7,
where G = 4(p — p,)a’g/S. In the definition of G, a is the
tube radius, g is the gravitational acceleration, § is the surface
tension, and p and p, are, respectively, the densities of liquid
and air, The static stability of a drop hanging from a tube was
analyzed by Pitts (1973, 1974) by use of the energy method.
Two cases were considered. The first case is that of constant
drop volume and the second was that of constant pressure at
the mouth of the tube. Numerical examples were used to demon-
strate that stable drops on a tube can only be formed under
constant pressure in the liquid if the radius is less than a certain
critical value. However, no general criteria of stability are given.
In this work we report the results of linear stability analysis of
a pendent drop supporting the weight of a liquid column of
finite height in a circular tube with its lower end open to air.
The critical height of the liquid column below which the pendent
drop is stable is given as a function of the Bond number in the
form of a neutral stability curve. Measurements of liquid pen-
dent shape have been used as a means of determining interfacial
tension by Pitts (1973, 1974). Thus the stability of a liquid
pendant in another fluid is of considerable practical importance.
The stability of hanging drops is also of fundamental importance
in understanding the regimes of jet breakup (Lin and Ibrahim,
1990).

Stability Analysis

Consider the stability of a drop hanging from a circular cylin-
drical tube as shown in Fig. 1. The shape of the pendent depends
on the density of the liquid p and the ambient gas density p,,
the interfacial tension, and the liquid volume and the tube radius
a. As the volume of the liquid is increased, it may reach a
critical value beyond which the interfacial force is insufficient
to maintain the pendent in equilibrium. Before this critical vol-
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The Hydrodynamic Stability
of Pendent Drop Under
a Liquid Column

The hydrodynamic stability of a liquid column resting on a gas in a vertical tube
with its upper end closed is analyzed. The maximum height above which the interface
is unstable is given as a function of the Bond number and the density ratio. The
instability is shown to be monotonic, i.e., nonoscillatory.

ume is reached, the shape of the interface is determined by the
exact balance of the pressure difference across the interface and
the interfacial force per unit area. We nondimensionalize the
length with a, the pressure with pga, where g is the gravitational
acceleration. Then the dimensionless pressure exerted by the
liquid is py = p, + h, where h is the distance between the upper
solid lid, maintained at the pressure p,, and the lower interface.
The pressure exerted by the ambient gas is p, = p, + gh, where
q = p./p, and p, is the gas pressure at the level of the upper
lid. The force balance at the interface gives (see, for example,
Joseph, 1976)

pp—p:—B'V:n=0

where n is the unit normal vector pointing from the liquid to
the ambient gas and B is the Bond number defined by

B = pga’ls.

In terms of the liquid column height and ¢, the equation of
interfacial force balance can be written as

[P — pa + Hi (1 — q)]

+(h—h)(1—-—g)—B'V:n=0, (1)
where h, is so chosen that 4, = (p, — p;)/(1 — ¢q), and thus
the sum in the bracket vanishes. When A = h;, V *n = 0 and
the interface is flat. Then the net weight of the liquid column
of height h = h, and of unit crossectional area is exactly bal-
anced by the pressure difference p, — p,. For an axisymmetric
pendant V +n at the interface z = h can be written in the
cylindrical coordinates (r, 6, z) as

Voen=—h,(1+h)™ =k [r(1+k)"1, (2)

where i = h — h,, h, being a constant, Strictly speaking, Eq.
(1) with Eq. (2) applies only at the liquid-gas interface, but
not at the solid-liquid-gas interline at the tube wall. Unfortu-
nately, very little is known about the interline force. Usually,
it is parameterized with contact angle 6. Nevertheless, Eq. (1)
can be integrated with or without specifying 6. In this problem,
the contact angle is not constant. The shapes of the pendants z
— h; = h corresponding to three different volumes for given B
and g are given in Fig. 2 for illustration. These shapes were
determined from integration of Eq. (1) with given £(0) and
h.(0) = 0 by use of the fourth-order Runge-Kutta method.
The shapes so determined have different contact angles which
depend on the liquid volume. Different solutions of (1) and (2)
can be found for different contact angles specified at the wall.
The specific contact angle depends on the interline force which
in turn depends on the properties of pipe wall, liquid, and gas.
The solutions we found are for the particular ones corresponding
to zero interline force. Thus, the menisci we found can be held
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Fig. 1 Definition sketch

stationary without help from the interline force the physics of
which is not yet understood.

To investigate the stability we introduce disturbances into the
fluids, and determine the condition under which the disturbance
will not grow in time. At the onset of instability the flow remains
largely irrotational within the viscous diffusion time. Thus the
velocity perturbation v; is given by the gradient of the velocity
potential ¢, i.e.,

v, = Vi,
where i = 1 stands for liquid and | =
satisfies the Laplace equation

V2 =0. (4)

The solution of Eq. (4) for i = 1 which satisfies the no penetra-
tion conditions at the tube wall r = 1 and at the upper lid z =
0 is given by

1 = 2 B, () J, (kur) cosh (k,z)

ne=]

(i=12) (3)

2 stands for gas. ¢,

(5)

where k, are the roots of
[dJ, (kr)ldr),—y = [—kyJy (kir)]=) = 0.

The solution of Eq. (4) for i = 2 which satisfies the condition
of vanishing disturbances as z—, and the no penetration condi-
tion at r = 1 is given by

¢2 = 3 Du(0)J, (k) exp(—k,z).

n=|

(6)

The perturbed interfacial position is given by
z=h(r)+d(r.t)

where h(r) designates the unperturbed interfacial position, and
the interfacial perturbation d is a function of r as well as time,
t. It is assumed that | d| < |h|. The unknown function B,(t),
D,(t) and d(r, t) are to be determined by the three interfacial
boundary conditions.

By definition the total time rate of change of the interfacial
displacement is equal to the axial velocity of the fluid particle
in each fluid, i.e.,

dvr + ¢I.rh w = ¢:’.: (?)

Note that the nonlinear term ¢;,d,, is neglected in Eq. (7).
This condition is assumed to be valid at the contact line. Thus
the contact line is not fixed but moves with the fluids along the
tube wall. This is possible either if the fluid is inviscid or if the

(i=1,2).

Journal of Applied Mechanics

interline force vanishes. The perturbed pressure in the liquid
and the gas at the interface can be obtained from the linearized
Bernoulli equation, and are given, respectively, by

m=pyt (h + d) - (le.!) + (¢’1.r z=01

Pz =pat Q(h +d) — q[(d’h) = (¢2J)z=0]-

Note that ¢;, + 0 at z = 0. Hence p, is changed from the initial
value of p, to p, + (¢ ,).=0 When the basic state is perturbed.
Substituting the expressions for the pressure and the interfacial
position H = h + d into the dynamic boundary condition Eq.
(1) with Eq. (2), subtracting the basic state part, and linearizing
the resulting equation, we have

(1 —q)d + 3, B,J,(kxr) [1 — cosh (k,h)]

+ q Z IjnJa(knr] [exP( _knh) - l]

n=1

+ We Q e [err - 3hrrhrdr + der"“r - Q hf dr'lr] = 0»
(8)

where the upper dot denotes time differentiation. The three
interfacial boundary conditions admit solutions for the interfa-
cial displacement of the form

d =3 hJ, (ki) exp(—iwt), B,=b,exp(—iwt),

Q=1+ ht

D, =d, exp(—iwt),

where w is the complex eigenfrequency of disturbances. This
particular form of d preserves the volume of the perturbed liquid
column, since

1
f Qardydr =27 (htk,) J, (k,) =0
0 n

By virtue of the equation following (5). Substituting these ex-
pressions into the boundary conditions, and forming the Galer-
kin projection with rJ,(k,r), m = 1 to N, we obtain a system
of 3N equations in 3N unknowns

{[C] —iw[A]} V=0, (92)
0.0 T T o T T
o5l W= (4.18, 0) V¥=0.34 i
h(r) it i
@ = (2,98, 0) V=122
1.5 J
w= (0, 1.3) V=175
r
2.0 L L " 1 1
0.0 0.2 0.4 0.6 0.8 1.0

r
-1
¢=0.00163, B =0.476931818

Fig. 2 Shapes of meniscus for three different liquid volumes
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where V is the eigenvector
V = [hy, ---hy, by, ---by, dy, ---dy]",

and the elements of the matrices [A] and [C] are given by

1
Ay = J' Ju (knrJ Ju (k,,,?‘) rdr = ON+mn

o

1
aN+mN+n = J- Jo (kmr) [I — cosh (knk)] Jﬂ(kﬂr) ?'df',

0

1

a‘ZN+m.2N+n = q J’ Ja {kmr) Ja (k"f') [cxp(_knh) _l] rdry
0

S f J, (kar) {1, (ko) sinh (k)

+ h.J, (ko) cosh (k) } rdr,
Cusmansn = o [ 4o Char) U ()

— hd, (ki) exp(— koh) rdr,
Ciines'™ f " Jo Gy 11 = @) Jy(har)

+ We[ Q7 ki J; (kur)
_ (Q—I-’Z r oy ’IQ -3/2 h‘f
-3 Q 22 hrhrr) knJ] (knr)] rdr,

(m=1toN, n=1toN);
where J! denotes second derivatives with respect to the argu-
ment of J,. Note h = h, + h in the integrands. Thus the stability
criteria will not only depend on B and ¢ but also the pressure
difference (p, — ps)/(1 — g). Although h; is a constant for
given p,, p», and g. For numerical demonstration, we consider
only the case of p, = ps, i.e., the case of a static liquid column
supported solely by surface tension without help from the pres-
sure difference p, — p,. For the case of p, < p, the stable
column is expected to be higher. For the case of p, > p,, the
stable column is expected to be shorter. Hence the numerical
results to be given are for the borderline case, but with some
generic feature among all three cases. The eigenvalues of the
system Eq. (9) have been solved with the values of N requnired
for the accuracy up to the third decimal point. N was found to
be ten over the parameter range considered here. The integrals

3.0 -1 T T v T v T

2.0
Ungtable

ml

+——+ q=0,00153
+—a q=0.0153
+—— q=0.153 ]

0.0 1 1 1 S 1
0.0 0.2 0.4 0.6 0.8 1.0
B-I

Fig. 3 Neutral curves for three different density ratios
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Table 1 Unstable pendent with g = 0.00153

B! 0.30 0.39 0.48
w! 0.29 0.99 1.30
h(o) 0.90 1.19 1.44
f(rad) 1.22 1.55 1.75

involving h are evaluated numerically by use of SLATEK sub-
routine dga458.

Results

There are two independent parameters in this problem, i.e.,
B and g, since we consider only the case of p, = p,. For each
set of given (B, ¢), static menisci are determined from Eq. (1)
with Eq. (2) for different values of h(o). Three such profiles
are given in Fig. 2. The eigenvalue with the largest imaginary
part corresponding to these three profiles are given in the figure.
The real parts of the frequencies are given as the first numbers
in the parentheses. The second numbers in the parentheses are
the imaginary part of the frequencies. For the two basic states
with smaller si(0), the imaginary parts of w are o. Thus, they
are neutrally stable according to linear theory. The real parts of
w decrease as k(o) is increased. Thus the frequency of oscilla-
tion decreases with increasing volume. However, the pendent
drop with the largest 2( o) has a conjugate pair of frequency with
zero real part. Hence this shape is hydrodynamically unstable.
Moreover, the instability is nonoscillatory, i.e., monotonic. It
appears that there exists a critical #(0), beyond which the pen-
dent drop is monotonically unstable for each pair of given (B,
¢). The monotonic behavior of disturbance is probably due to
the assumption that the interline is moveable. If the interline is
held fixed and B is sufficiently small, the instability may be, on
physical ground, conjectured to be oscillatory. The critical
height #.(0) = H is obtained for different pairs of (B, ¢), and
the results are given in Fig. 3. The interfacial tension and the
ambient gas density are both stabilizing in a sense that the
critical height can be increased by increasing their values. It is
seen from Fig. 3 that there exists, for each given value of ¢, a
critical Bond number, above which a flat interface, H = 0,
cannot be maintained. For g = 0.00153, B, is approximately
6.897, and for ¢ = 0.153 it is approximately 8.00. Our B is
related to Dussan’s surface tension parameter G by

G=4(1-g)B. (10)

It was found from energy stability analysis that the flat inter-
face of a liquid column over air is conditionally stable if

G < (3.83171)2, (11)

Substituting the critical Bond number for ¢ = 0.00153 into Eq.
(10), we find

G = 27.545,

which is larger than the critical value given in Eq. (11). Simi-
larly for ¢ = 0.153, we find the critical value of G to be 27.2
which is again larger than the critical value of G given by the
energy theory. Thus the energy theory gives a rather conserva-
tive estimate. It should be pointed out that while the contact
line is assumed to be immovable in the energy theory, it is
assumed here to move with the fluids along the tube wall.
However, the comparison is quite appropriate since the contact
line motion is infinitesimal in the present theory, and the dy-
namic of contact line is not considered in both theories. It should
be pointed out that for the case considered p, = p,, g # 1, we
have h; = 0. Hence & — h, = 0 for a flat interface. The liquid
column is then reduced to a membrane. The comparison with
the results of energy theory in this limiting case remains mean-
ingful, because the energy stability results are valid for any A.

Table 1 gives the growth rates, the liquid pendent heights,
and the contact angles for three different values of B, for the
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Table 2 Unstable pendent with g = 0.0153

B! 0.30 0.39 0.48
w, 0.37 1.28 1.95
h(o) 0.97 1.27 1.54
A(rad) 1.24 1.56 1.75

unstable pendent drop at ¢ = 0.00153. This value of g corre-
sponds to the case of an ethyl alcohol pendant in air under 1
atm at room temperature. Similar informations on the three
characteristic quantities are given in Table 2 for the case of g
= 0.0153. It is seen that all three characteristic quantities in-
crease with B! and g. However, the change in contact angle
is relatively insignificant, in view of the fact that the density of
the gas is increased by tenfold from Table 1 to Table 2. It may
be worth pointing out that the theory is still applicable when
the ambient gas is replaced by liquid. Then the effect of the
ambient liquid density will be more pronounced than that shown
in this work.

The basic state is in static equilibrium. At the onset of insta-
bility the flow is largely irrotational within the viscous diffusion
time. Hence the onset condition of instability predicted by the
present theory is probably adequate. The subsequent nonlinear
evolution of the unstable flow, however, will certainly be af-
fected by viscosity. Physics of interline remains to be under-
stood before a more complete theory can be advanced.

Conclusions

A liquid column resting above a gas in a vertical cylindrical
pipe without suction at the closed upper end of the pipe, and

Journal of Applied Mechanics

without help from interline force may be stably held against the
action of gravity by virtue of the interfacial tension only if the
height of the liquid column is sufficiently small. The critical
height above which the column is unstable is shown to increase
with the gas to liquid density ratio for a given Bond number.
For a given density ratio, the critical height decreases with the
Bond number. For the special case of a flat interface it is shown
that the critical Bond number for the linear instability is larger
than the known critical value predicted by the energy method,
as expected. At the onset, the instability is monotonic without
oscillation.
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Hydroelastic Vibration of
Rectangular Plates

This paper is concerned with the virtual mass effect on the natural frequencies and
mode shapes of rectangular plates due to the presence of the water on one side of
the plate. The approximate formula, which mainly depends on the so-called nondimen-
sionalized added virtual mass incremental factor, can be used to estimate natural
frequencies in water from natural frequencies in vacuo. However, the approximate
formula is valid only when the wet mode shapes are almost the same as the one in
vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in
general a function of geometry, material properties of the plate and mostly boundary
conditions of the plate and water domain. In this paper, the added virtual mass
incremental factors for rectangular plates are obtained using the Rayleigh-Ritz
method combined with the Green fiinction method. Two cases of interfacing boundary
conditions, which are free-surface and rigid-wall conditions, and two cases of plate
boundary conditions, simply supported and clamped cases, are considered in this
paper. It is found that the theoretical results match the experimental results. To
investigate the validity of the approximate formula, the exact natural frequencies and
mode shapes in water are calculated by means of the virtual added mass matrix. It
is found that the approximate formula predicts lower natural frequencies in water

Moon K. Kwak

Department of Mechanical Engineering,
Dongguk University,

26, Pil-Dong 3-GA, Joong-Gu,

Seoul 100-715, Korea

with a very good accuracy.

1 Introduction

When the structure is in contact with water or immersed in
water, the vibration of the structure is transferred to the water
and give rise to water motion. As a result, there is a discernible
increase in the kinetic energy due to the additional kinetic en-
ergy of the water. Because of increase in the kinetic energy,
the natural frequencies of structures which are in contact with
water, or immersed in water, decrease significantly compared
to the natural frequencies in vacuo. This problem is referred to
as the fluid-structure interaction problem or the hydroelastic
vibration of structures. This kind of coupling problem does not
permit the exact solution with ease. However, there have been
theoretical approaches to the problem of circular and rectangular
plates in contact with water based on the assumption that the
mode shapes do not change under the influence of the water.
This assumption leads to the following approximate formula

£ = fa
*“1+p0

where f,, is the natural frequency in water, f, is the natural
frequency in vacuo, 8 = p,a/p,h is a nondimensional parameter
called a thickness correction factor in which p,, and p, are the
mass densities of the water and the plate, a is the width for
rectangular plates and the radius for circular plates, A is the
thickness of plates, and I" is a nondimensional parameter known
as a nondimensionalized added virtual mass incremental
(NAVMI) factor which mainly depends on the mode shape,
respectively. The NAVMI factor, T', reflects the ratio of the
kinetic energy of the water and the kinetic energy of the plate.
This formula is very handy for the calculation of the natural
frequency change since the natural frequency in water can be

(1)
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calculated based on the natural frequency in vacuo and the
NAVMI factor. Hence, the determination of the NAVMI factor
is of prime interest in this case. However, currently the available
NAVMI factors are limited to the special cases of circular and
rectangular plates. If the structure and the water domain be-
comes complex, then we should seek the solution with the aid
of the fluid finite element method (FFEM) (Zienkiewicz and
Newman, 1969; Chowdhury, 1972; Marcus, 1978; Muthuver-
rappan et al.,, 1978, 1979, 1980; Rao, 1985) or the Green func-
tion method (Fu and Price, 1987) for the water domain in
conjunction with the structural finite element method. Due to the
difficulty in the theoretical approach to the addressed problem,
experiments have been also conducted (Carmichael, 1960, Lind-
holm et al., 1965; Morel, 1979).

Based on the assumption that the wet mode shapes are almost
the same as the one in vacuo, Lamb (1920) calculated the
change in natural frequencies of a thin clamped circular plate
in an aperture of an infinite rigid plane wall in contact with
water. By employing Lamb’s approach, McLachlan (1932) ex-
tended Lamb’s work to the free circular plate and Peak and
Thurston (1954 ) generalized the work of Lamb and McLachlan,
Powell and Roberts ( 1923 ) experimentally verified the theoreti-
cal results of Lamb’s. Espinosa and Juarez (1984) calculated
the pressure distribution of water numerically and compared
theoretical results with Experimental results for the free-edge
circular plate. Since these works are mostly related to the funda-
mental mode of the circular plate, Kwak (1994) generalized
the approach by employing the Fourier-Bessel series and ob-
tained the NAVMI factors for higher modes. He also studied
the effect of water on the mode shape and found that the funda-
mental mode shape remains the same under the influence of
water but higher mode shapes change. Since the Lamb’s case
is limited to the plate placed in the aperture of the rigid wall,
his approach can not be applied to the case of the plate indepen-
dently resting on the free surface or fully immersed in water.
Thus, Kwak and Kim (1991) and Kwak (1991) solved the
mixed boundary value problem and obtained NAVMI factors
for circular plates independently resting on the free surface. All
of these works are concerned with circular plates.

Compared to the theoretical achievement on the circular
plates in contact with walter, there are only few available theoret-
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ical results on the vibration of rectangular plates in contact
with water, Kito (1944) calculated the added virtual mass of
rectangular plates by Fourier series method. He replaced the
plate in an aperture of an infinite rigid wall by the equivalent
problem consisting of many plates which are in opposite phase
with the plate of interest. This approach enables the Fourier
series expansion so that the plate can be regarded as being
chordwisely semi-finite and lengthwisely semi-finite. Green-
spon (1960) calculated the effect of water on the natural fre-
quency by using the piston theory, which leads to the erroneous
result that the added virtual mass effect is nullified in some
modes. Kim (1978) for the first time derived the expression in
terms of series for the added virtual mass of the simply sup-
ported rectangular plate which is chordwisely finite and length-
wisely semi-finite by using the Mathieu function. His work is
the extended version of Kito’s work. However, Kim'’s work is
unique compared to the previous results since the rectangular
plate is placed inside the water domain independently without
any additional supporting structure. Considering the boundary
condition that Kim considered in his paper, it becomes evident
that the plate is pseudo independent. In later papers (Kim and
Kim, 1978, Kim, Kim, and Lee, 1979), he studied the effect
of supporting boundary conditions of plates and presented ex-
perimental results which verified his theoretical results. It should
be noted here again that Kito (1944) and Kim (1978) fail to
realize the exact boundary condition for either the plate in an
infinite baffle or the plate independently resting on a free surface
or fully immersed in water. This motivated the current research
on the hydroelastic vibration of rectangular plates.

In this paper, an attempt is made to clarify the discrepancies
found in theoretical and experimental works. To this end, the
NAVMI factors are obtained for uniform rectangular plates hav-
ing simply supported and clamped boundary conditions, and
vibrating in contact with water. Two cases are considered for
the outside boundary condition, i.e., the case of the plate placed
in an aperture of an infinite rigid plane wall and the case of the
plate independently resting on a free surface. The case of the
plate fully immersed in water amounts to the case in which
both sides of the plate are in contact with water, so that the
NAVMI factor in this case is the twice the value of the one for
the plate independently resting on a free surface.

Compared to the case of circular plates, the boundary value
problem does not possess the closed-form expression. Thus, we
should resort to the numerical approach. In this paper, the Green
function is employed to solve the boundary value problem of
the water domain. Since the resulting integral equation does not
yield the exact form, we discretize the interfacing domain into
a multitude of a small panel, which can be regarded as the
Boundary Element Method (BEM). This method is then com-
bined with the Rayleigh-Ritz method, leading to the equation
of motion for rectangular plates in contact with water. As a
result, the added virtual mass matrix is obtained instead of
NAVMI factors which are in fact the diagonal terms of the
added virtual mass matrix. The accuracy of the approximate
formula is tested by calculating natural frequencies by solving
the eigenvalue problem consisting of the plate mass and stiff-
ness matrices and the virtual added mass matrix. Numerical
results show that the approximate formula provide good accu-
racy for the first four modes, The theoretical results obtained in
this paper are in good agreement with the experimental results.

2 Kinetic and Potential Energies of Rectangular
Plates in Air

Let us consider a rectangular plate vibrating in vacuo and
assume that the thickness, /i, of the plate is very thin compared
to the width, a, and the length, 5. Introducing nondimension-
alized variables, £ = x/a and n = y/b and using the Rayleigh-
Ritz method, we can expand the displacement vector in terms
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of the admissible functions multiplied by the time-dependent
generalized displacement vector.

w(&, n, 1) = W(E na(n) (2)

where W = [X,(£)Yi(n) X2(£) Ya(n) ... X.(§)Y,(n)] repre-
sent the vector of the admissible functions in which X;(£) and
Y;(n) represent the admissible functions in x and y-directions
and n is the number of the admissible functions, respectively,
and q(t) = [q) ¢z . . - q,]” represents the generalized velocity.
Then, the kinetic and potential energies can be expresses as

1 Db
V= -2——3qTK;!‘q (3q, b)
a

T, = 3p,habq" M q,
where p, is the mass density of the plate, D = Eh*/12(1 —
v*), E is the Young’s modulus, v is the poisson’s ratio, and
the element of M¥ and K} are expressed as

(M#);=EE) i,j=12....n (4a)
and
1 2(1 — v
(KEY = GYEY + 35 EiGY + =2 FyFy
+6—”2(H,f.-fff,- +HIH), Lj=1,2,...,n (4b)

in which § = b/a represents the aspect ratio of the rectangular
plate and

1 I
Ej= f X, X;d€, Ej= f YiY;dn,
0 0

1 ]
[ = _L X!X]d¢, F =J.0 Y!Y)dn  (5a-d)

1
G} = f Y'Y ldn,

0

1
Gy = _[ XiXjdg,
o

I 1
Hjj = f X Xjdg, Hyp= f YY jdn (Se-h)
(1] L]

where ' indicates the derivative. Eigenfunctions of the beam
corresponding to the boundary condition of the plate are used
as admissible functions for the evaluation of the integrals shown

in Egs. (5).

3 Added Virtual Mass

The boundary value problem of the plate in contact with
water can be solved by using the Green function method. This
implies that sources of unknown strength o( Q, t) are distributed
on each panel over the water-vacuo or water-solid interface
which includes the plate area. This approach is equivalent to the
boundary element method. The velocity potential at a nominal
position P in the water is then given by

1
&P, 1) = s J.f a(Q, HG(P, Q)dS (6)
7 J Js

where G is the Green function which satisfies the boundary
conditions. In general, G has the form of

G(P, Q)= + G*(P, Q) (7

.
[P -0l
where G*(P, Q) is introduced to compensate the boundary
conditions such as bottom boundary condition, free-surface con-

dition, etc. In this paper, the water is assumed to be unbounded
so that G* = 0. In addition,
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[P ~0Q] = \/(x.v = XY (Vo= V) + {5 — Zq)z- (8)

The unknown source strength o can be determined from the
integral equation

P ) s ” oP, 1) 28D 4o _ bty (9)
2 dar s on

where v is the normal velocity at the point of interest. In the
case of flat surface, (dG (P, Q)/dn) becomes zero. Hence, the
source strength can be expressed in terms of the normal velocity
given on the interfacing surface.

(T(-xp, yp! I) = _2U(xp| yp’ r) (10)
Inserting Eq. (10) into Eq. (6), we can obtain the velocity
potential at the interface

l J‘f U(x;,, yf” I)
o e mll das.
D(Xps Yps 1) 2w J Js \’(xp = x) + (9 — 39)?

Considering that beam eigenfunctions are used as admissible
functions, it becomes evident that the exact integration is not
available for such functions. Thus, we should resort to the nu-
merical approach. Let us divide the interfacing surface into a
multitude of a small panel and assume that the source strength
the velocity potential are uniform in each panel. This approach
amounts to the collocated method used in the numerical evalua-
tion of integral equations. Hence, the velocity potential in the
ith panel can be written as

(11)

8
2

m x4+ {Axf2) yj"«(ﬁyﬂ,} d d
i Xt
X Z v f f 4

ot gt dy—aem A(x = )%+ (y — pi)?

di(xi, yin 1) = —

(12)

where m is the number of square elements used to cover the
interfacing area of interest. In matrix form, we may write

g wo= iy (13)
4
where ¢ = [y ¢z ... pn]"and v = [v; 15 ... v,]" and
2 x H(AXI2Z) py +(Ay2)
A,;:-—f’ f’ ey . (14)
Ay Jy-asny Jdy-cayn V(x — x, Y+ (y—y)?

For simplicity, let us consider a square panel, i.e., Ax = Ay.
By introducing local variables,

-"zxj‘f‘ﬁfs J’=J’j+‘£}ln. (15a, b)
2 2
and nondimensionalized variables,
2(x — x) 200 —y)
T Y e ¥ j- T ¥ 16 y b
ff} AI Tf)' &y ( d .}
we can derive
] 1 d d
,q,.j.=f f ey -. (D
e =€) + (0 — )

The evaluation of the above integral was carried out using Math-
ematica (Wolfram, 1988) and the following were obtained:

i =

7.050989 i=j
(18)

I(Eu'! 7?{:) i '_#J‘
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in which
1 — & + 6
I(€s, 1) = (1 — ) log — =4 7 91
€ m) = (1= np log 50
+ log (1 — my + 6)(1 — my + 63)
+ &y log ————— + (1 + ) log —4——
& log B ——— ( ) Og_l =~

1+ Ty + 64
+ £ T MR R
§ylog T— s

where
6=V~ 1+ (= 1)2, &=+ 1)2+ (- 1)?
6 =V(E— 1)+ (my+ 1)%, 8=V(&;+ 1)+ (ny + 1)

We can decompose the matrix Eq. (13) into sub equations
belonging to the plate area and the outside area of the plate.
Hence, we may write

{(,b,,} o pro Ay | Ay Ay {vp

b, 4r | Ay Aso | Ve

where subscripts p and o denote the plate and the outside, 4,
is an [ X [ matrix, in which / is the number of elements belonging
to the plate area, A, is an [ X (m — [) matrix, A,, is an (m —
Iy X [ matrix, and A,, is an (m — [) X (m — I) matrix, respec-
tively. In the case that the plate is placed in an aperture of a
rigid wall, then the outer boundary condition becomes v, = 0
and if the plate is resting independently on the free surface,

then ¢, = 0. Thus, we may write the following equation for
both cases

(19)

A
b= — —2 A%, (20)
4
where
Ay for rigid wall
Ax=4"" (21)
App = ApA Ll A, for free surface.

Using the same assumption used for the evaluation of the
velocity potential, the kinetic energy of the water can be ob-
tained by the summation of individual kinetic energy of each
panel.

T, = "%Pw Z J.f l,b,i"'; dS, (22)
i=1 5

The summation is carried out only for the plate domain since
the product, ¢;v;, becomes zero outside the plate in either case.
Hence, we obtain

T, = —3p AxAy v'd,. (23)
At the water-plate interface, we have the relation
v, = ¥q (24)
where
Qi (x1, 1) lx, ) D, (x1, y1)
U= ‘I}I(va y2) Q’(Xz; y2) ‘I’n(x:;; y2) (25)
B y) Bly) v Bl w)
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Inserting Eq. (20) into Eq. (23) and using Eq. (24), we obtain

j-ll' = %qTqu (26)
where
2
M, = ﬂ:.éﬂ_\pu*q, (27)
4

represents the added virtual mass matrix due to the presence of
the water. As indicated by Eq. (27), the evaluation of the added
virtual mass matrix depends on the evaluation of the matrix A *,
i.e., A given by Eq. (14). Since the square element is considered
in the discretization process, Ax = Ay = a/N where N is the
number of divisions in x direction, we can rewrite Eq. (27) in
the form

M, = p.a’bM¥ (28)

where

- !

Y 47N

PrA*D, (29)

4 Equation of Motion

Using Hamilton’s principle and Eq. (26), and considering
Egs. (3) and (28), we can obtain the equation of motion for
the rectangular plate vibrating in contact with water.

D
poha’

Hence, the eigenvalue problem can be written as

[M* + BME)§ +

K¥q =0. (30)

[K# — N[M# + BM[]| =0 (31)
where A = p,ha’w?/D. Tt has been assumed in the previous
research that the normal modes do not change when the water
is present. In order to investigate the validity of this assumption,
let us use the eigenvalue and eigenvector of the plate vibrating
in vacuo. Using eigenvectors, eigenvalues, and the orthonor-
mality relations, UfM U, = I and U;K}U, = A,, we obtain
where M* = U M} U,. The assumption that mode shapes do
not change under the presence of water amounts to saying that
M is a diagonal matrix. If this is true, then we may write

h.w' = Aa.;\'l + ﬁr,

where I, = (M#),;, represents the nondimensionalized added
virtual mass incremental factor for the ith mode. However, it
is observed that M# is a diagonally dominant matrix but off-
diagonal terms affect the mode shapes, so that the assumption
is violated to some extent as shown in the numerical example.

(33)

5 Numerical Results

A question arising in the evaluation of the integral is how
many elements are necessary for the convergence of the added
virtual mass matrix. It was found from numerical experiments
that 100 elements, which imply ten divisions in x and y-direc-
tions, are enough for the practical application.

Figure 1 shows the NAVMI factors for the first four modes
of the simply supported rectangular plates resting on a free
surface, where the numbers inside parenthesis represent the
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number of nodal lines in x and y-directions, In Fig, 1, the dashed
lines are the theoretical results obtained by Kim (1978) and
symbols represent the experimental results obtained by Kim,
Kim, and Lee (1979). The matrix A * needs to be computed in
order to evaluate the added virtual mass matrix. To this end,
we need a fairly large water domain. Numerical experiments
show that the area which is 4 times larger than the plate area is
enough for practical applications. The calculation of A * requires
enormous CPU time and the inversion of the partial matrix
shown in Eq. (21) also requires more CPU time. For instance,
if we divide the square plate area into 100 elements, then we
need at least 400 elements for the interfacing area and should
invert a 300 by 300 matrix. This is not desirable from the
viewpoint of computer floating point operations and the memory
management. It should be mentioned that the numerical calcula-
tion performed for this research is very time-consuming and
inefficient. As an alternative, one may consider the approach
which shifts the pressure as the dependent variable within the
Green’s integral (Terai, 1980) for the case of plates indepen-
dently resting on a free surface. However, as shown in the
figure, the theoretical results obtained in this paper are very
good agreement with experimental results and lower than those
obtained by Kim (1978). This becomes evident since the rectan-
gular plate considered by Kim is semi-finite in lengthwise.

Figure 2 shows the NAVMI factors for the first four modes
of the simply supported rectangular plates placed in the aperture
of the infinite rigid plane wall. It can be readily seen that the
NAVMI factors of this case is larger than those for the plates
resting on the free surface. This is due to the fact that the rigid
wall constrains the motion of the water thus resulting in increase
in the kinetic energy. The dashed line is the theoretical result
for the fundamental mode obtained by Kito (1944 ). There is
no experimental data for this case,

Figure 3 shows the NAVMI factors for the first 4 modes of
the clamped rectangular plates resting independently on a free
surface when v = 0.3. The same area of the water domain as
the one used for the simply supported plates is considered.
Symbols represent the experimental results obtained by Kim,
Kim, and Lee (1979). As shown in the figure, the theoretical
results obtained in this paper are good agreement with experi-
mental results.

Figure 4 shows the NAVMI factors for the first 4 modes of
the clamped rectangular plates placed in the aperture of the
infinite rigid plane wall. Tt can be also seen as in the case of
the simply supported plate that the NAVMI factors of this case
is larger than those for the plates resting on the free surface.
This can be explained by the same physical phenomena as in

04

NAVMI Factor

0.1 T T T T T T T

bla
Fig.1 NAVMI factor for the simply supported rectangular plates resting

on a free surface (dashed lines: theoretical results by Kim (1978}, sym-
bols: experiments by Kim, Kim, and Lee (1979))
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NAVMI Factor
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bla

Fig. 2 NAVMI factor for the simply supported rectangular plates placed
in an aperture of the rigid wall (dashed line: (1, 1) by Kito (1844))

the case of the simply-supported plates. There is no experimen-
tal data for this case.

It is found that the NAVMI factors of the simply supported
plate is larger than those of the clamped plate. This can be
explained by the fact that the vibration amplitude of the simply-
supported plate is larger than that of the clamped plate due to the
rotational freedom along its edge. This has also been observed in
the case of circular plates (Kwak, 1991).

To answer the question regarding the accuracy of the approxi-
mate formula, the added virtual mass matrix was calculated by
using 25 admissible functions for the case of simply-supported
square plate vibrating in the aperture of an infinite plane rigid
wall. As shown in Fig. 5, errors of natural frequencies for the
first four modes remain very small even for large value of §
which implies high water effect on the plate. Thus, it can be
concluded that the approximate formula is valid for the first
four modes of the plate. Although wet mode shapes for the
lowest four modes do not change significantly from dry mode
shapes, it was observed that the higher wet mode shapes change
thus resulting in new breed of mode shapes among natural mode
shapes.

6 Discussion and Conclusions

When the structure is in contact with water or immersed in
water, there is a discernible increase in the kinetic energy due
to the additional kinetic energy of the water. The problem asso-
ciated with this phenomena is called the hydroelastic vibration.

0.4

NAVMI Factor

Fig. 3 NAVMI factor for the clamped rectangular plates resting on a
free surface (v = 0.3, symbols: experiment by Kim, Kim, and Lee (1978))
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Fig. 4 NAVMI factor for the clamped rectangular plates placed in an
aperture of the rigid wall

This paper is concerned with the hydroelastic vibration of rect-
angular plates.

Traditionally, the approximate formula has been used for the
prediction of changes in natural frequencies of plates in contact
with water, which mainly depends on the nondimensionalized
added virtual mass incremental (NAVMI) factor. The NAVMI
factor, I, reflects the ratio of the kinetic energy of the water and
the kinetic energy of the plate. The validity of the approximate
formula is governed by the assumption that mode shapes do
not change under the influence of the water. However, this
assumption has never been questioned for rectangular plates in
contact with water even though it is found recently that mode
shapes change in the case of circular plates (Kwak, 1994).

Compared to the theoretical achievement on the circular
plates in contact with water, there are only few available theoret-
ical results on the vibration of rectangular plates in contact with
water. In this paper, an attempt is made to obtain the NAVMI
factors for uniform rectangular plates having simply supported
and clamped boundary conditions, and vibrating in contact with
water. Two cases are considered for the outside boundary condi-
tion, i.e., the case of the plate placed in an aperture of the
infinite rigid plane wall and the case of the plate independently
resting on a free surface. Coupled boundary value problem was
solved by employing the Green function. Since the boundary
value problem addressed in this paper does not permit the
closed-form expression, we should resort to the numerical ap-
proach. Hence, the interfacing area is discretized into a multi-
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Fig.5 Error in natural frequencies in water obtained by the approximate
formula
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tude of small elements, which is equivalent to the boundary
element method. We then obtained the equation of motion by
combining the kinetic and potential energies of the plate and
the kinetic energy of the water. We solved the eigenvalue prob-
lem based on the mass and stiffness matrices and analyzed the
effect of water on mode shapes as well as the accuracy of the
approximate formula, where the mass matrix consists of the
mass matrix of the plate and the virtual added mass matrix due
to the presence of water.

It turns out that mode shapes change slightly for lower modes
but change discernibly for some higher modes. Thus, we can
conclude that the approximate formula guarantees very good
accuracy for lower modes. The theoretical developments made
in this paper were confirmed by comparing them to experimen-
tal results.

References

Carmichael, T. E., 1960, ““Invesligation into the Vibration of Ship's Plating:
Part 3. The Effect of Entrained Water on the Vibration of Hull Plating below the
Water-line,”" The British Shipbuilding Research Association Report No. 305 (R.B.
1597).

Chowdhury, P. C., 1972, **Fluid Finite Elements for Added Mass Calcula-
tions,”” International Shipbuilding Progress, Yol. 19, pp. 302-309.

Espinosa, F. M., and Gallego-Juarez, J. A., 1984, *‘On the Resonance Frequen-
cies of Water-Loaded Circular Plates," Journal of Sound and Vibration, Vol. 94,
No. 2, pp. 217-222.

Fu, Y., and Price, W. G., 1987, "‘Interactions between a Partially or Totally
Immersed Vibrating Cantilever Plate and the Surrounding Fluid," Journal of
Sound and Vibration, Vol. 118, No. 3, pp. 495-513.

Greenspon, J. E.,, 1961, **Vibration of Cross-Stiffened and Sandwich Plates
with Application to Underwater Sound Radiators,”" Journal of Acoustical Society
of America, Vol. 33, No. 11, pp. 1485-1497,

Kim, K. C., 1977, “Calculation of Added Mass of a Rectangular Plate in
Elastic Vibration,"' PRADS, Tokyo, Japan, Paper B-19.

Kim, K. C., and Kim, J. 8., 1978, **The Effect of the Boundary Condition on the
Added Mass of a Rectangular Plate,"" Journal of the Society of Naval Architects of
Korea, Vol. 15, No. 2, pp. 1-11 (in Korean).

Kim, K. C., Kim, J. S,, and Lee, H. Y., 1979, **An Experimental Study on the
Elastic Vibration of Plates in Contact with Water,” Journal of the Society of
Naval Architects of Korea, Vol. 16, No. 2, pp. 1-7 (in Korean).

Kito, F., 1944, **On the Added Mass of Flat Plates Vibrating in Water,”” Zotsan
No. 266, Zoxen Kyokai Japan, pp. 110 (in Japanese).

Journal of Applied Mechanics

Kwak, M. K,, and Kim, K. C., 1991, "*Axisymmetric Vibration of Circular
Plates in Contact with Fluid,”” Jowrnal of Sound and Vibration, Vol. 146, No. 3,
pp. 381-389.

Kwak, M. K., 1991, **Vibration of Circular Plates in Contact with Water,"’
ASME JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 480--483.

Kwak, M. K., 1994, **Hydroelastic Vibration of Circular Plates,”” ASME Jour-
NAL OF APPLIED MECHANICS, submitted for publication.

Lamb, H., 1920, **On the Vibrations of an Elastic Plate in Contact with Water,”
Proceedings of the Royal Society of London, Vol. A98, pp. 205-216.

Lindholm, U. S., Kana, D. D., Chu, W. H., and Abramson, H. N., 1965,
“*Elastic Vibration Characteristics of Cantilever Plates in Water,”" Journal of Ship
Research, Vol 9, No. |, pp. 11-22.

Marcus, M. S., 1978, “*A Finite Element Method Applied to the Vibration of
Submerged Plates,”” Journal of Ship Research, Vol. 22, No. 2, pp. 94-99.

MeLachlan, N. W., 1932, “*“The Accession to Inertia of Flexible Discs Vibrating
in a Fluid,”" Proceedings of the Physical Society, London, Vol, 44, pp. 546-555.

Morel, P., 1979, *‘Experimental Studies on the Subject of Virtual Intervenant
in Vibrations of Naval Structures,”” Bull. Tech. Bureau Veritas, pp. 96101 (in
French).

Muthuverrappan, G., et al., 1978, “*Vibration of Square Cantilever Plate Im-
mersed in Water,”" Journal of Sound and Vibration, Vol. 61, No. 3, pp. 467-
470.

Muthuverrappan, G., et al., 1979, ““A Note on Vibration of a Cantilever Plate
Immersed in Water,” Journal of Sound and Vibration, Vol. 63, No. 3, pp. 385—
391,

Muthuverrappan, G., et al., 1980, “‘Influence of Fluid Added Mass on the
Vibration Characteristics of Plate under Various Boundary Conditions,” Journal
of Sound and Vibration, Vol. 69, No. 4, pp. 612--615.

Peake, W. H., and Thurston, E. G., 1954, **The Lowest Resonant Frequency
of a Water-Loaded Circular Plate,"” Journal of the Acoustical Svciety of America,
Vol. 26, No. 7, pp. 166-168.

Powell, J. H., and Roberts, J, H. T,, 1923, **On the Frequency of Vibration of
Circular Diaphragms,’” Proceedings of the Physical Society, London, Vol. 35, pp.
170-182.

Rao, S. N., and Ganesan, N., 1985, ““Vibration of Plates Immersed in Hot
Fluids,"” Computers & Structures, Vol. 21, No. 4, pp. 777-787.

Tanida, K., 1981, “Elastic Vibration of Cantilever Plate Submerged in Water,"'
IHI Technical Report.

Terai, T., 1980, **On Calculation of Sound Fields Around Three Dimensional
Objects by Integral Equation Methods,” Journal of Sound and Vibration, Vol.
69, No. 1, pp. 71-100.

Wolfram, 8., 1988, Marthematic: A System of Doing Mathematics by Computer,
Addison-Wesley, Redwood City, CA.

Zienkiewicz, O. C., and Newton, R, E., 1969, **Coupled Vibrations of a Struc-
ture Submerged in a Compressible Fluid,"" Proceedings of Symposium on Finite
Element Technigue, Stuttgart, West Germany, pp. 359-371.

MARCH 1996, Vol. 83 / 115

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Local Stability of Gyroscopic
Systems Near Vanishing
Eigenvalues

Vanishing eigenvalues of a gyroscopic system are always repeated and, as a result
of this degeneracy, their eigenfunctions represent a combination of constant displace-
ments with zero velocity and the displacements derived from constant, nonzero veloc-
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harmonic vibration is not sufficiently general to represent this motion as the displace-
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formulation, however, the assumption of harmonic vibration is sufficient. Solvability
criteria are required to determine the complete form of such eigenfunctions and in
particular whether or not their velocities are identically zero. A conjecture for gyro-
scopic systems is proposed that predicts whether the eigenvalue locus is imaginary
or complex in the neighborhood of a vanishing eigenvalue. If the velocities of all
eigenfunctions with vanishing eigenvalues are identically zero, the eigenvalues are
imaginary; if any eigenfunction exists whose eigenvalue is zero but whose velocity
is nonzero, the corresponding eigenvalue locus is complex. The conjecture is shown
to be true for many commonly studied gyroscopic systems; no counter examples have
vet been found. The conjecture can be used to predict divergence instability in many
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cases without extensive computation.

1 Introduction

Gyroscopic systems include as examples translating and ro-
tating strings, beams, membranes, and plates. These systems
possess combinations of system parameters that produce van-
ishing eigenvalues. Such combinations of system parameters
are designated herein as critical system parameters and their
vanishing eigenvalues and the corresponding eigenfunctions as
critical eigenvalues and critical eigenfunctions. For the exam-
ples listed above, critical eigenvalues occur at critical translation
or rotation speeds.

The eigenvalue locus of a critical eigenfunction plotted as a
function of a system parameter in the neighborhood of its critical
value can be either imaginary, and therefore result in oscillatory
solutions, or complex and indicate exponentially growing am-
plitudes. These two cases are normally distinguished by exten-
sive computations. The goal of this paper is to provide an expla-
nation for the different stabilities which can be applied without
extensive computations. This explanation may also suggest
techniques for controlling or improving the system’s stability.

Stability criteria for gyroscopic systems have been formulated
for both discrete and continuous systems. For discrete systems,
the criteria usually relate the definiteness of a combination of
the coefficient matrices in the equation of motion to the stability
of the system (Huseyin et al., 1983; Inman, 1988; Huseyin,
1991). The extension of these criteria to continuous systems
can only ensure stability when the system stiffness operator is
positive definite (Shieh, 1971; Wickert and Mote, 1990). In the
neighborhood of vanishing eigenvalues, the stiffness operator
is not definite and these stability criteria do not apply. Other
stability criteria have been developed to examine continuous
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systems whose stiffness operator is not definite, but these crite-
ria usually require knowledge of the system eigenfunctions
(Shieh and Masur, 1968; Shieh, 1971), which is normally as
difficult to obtain as the eigenvalues themselves.

The principal observation of this work is that, for both contin-
uous and discrete gyroscopic systems at critical values of the
system parameters, there may exist eigenfunctions describing
the superposition of a constant displacement and the displace-
ment derived from a constant, nonzero velocity. This form of
eigenfunction is excluded from the solution space when har-
monic vibration is assumed for the second order eigenvalue
problem, but it is natural to the first-order eigenvalue problem
(Wickert and Mote, 1990).

A stability conjecture is presented based on this observation
that predicts whether the eigenvalue locus of a critical eigen-
function plotted as a function of a system parameter in the
neighborhood of its critical value is imaginary or complex. Al-
though no proof is furnished, the conjecture is shown to be true
for many commonly studied gyroscopic systems, and no counter
examples have yet been found. The conjecture can often be
applied to predict divergence instability without computation
if the shapes of the critical eigenfunctions are approximately
known.

2 Equation of Motion

The equation of motion of a continuous (discrete ) gyroscopic
system is represented by

Mu,, + Gu,, + Ku=71 (1)

where M, G, and K are linear differential (matrix ) operators in
the spatial domain, u is displacement, fis a forcing term, ¢ is
time, and a comma denotes partial differentiation. Symmetries
of M, G, and K in the spatial domain give for all ¥ and w
satisfying appropriate boundary and continuity conditions

(Mu, w) = (u, Mw) (Gu, w) = —(u, Gw)

(Ku, w) = (u, Kw) (2)
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where (,) is the inner product associated with (1). M is positive
definite.

Equation (1) can be recast in first order form by defining the
vectors

w=[u, u]” q=[f 01" (3)
and the matrix differential operators
M 0 G K
A= B = 3
I R A B
Equation (1) becomes
Aw, + Bw = q. (5)

A system parameter, such as translation or rotation speed, is
termed critical if nontrivial solutions exist to the homogeneous
equation Ku = 0. The set of null solutions is § where

S = (u:Ku=0,u=+ 0, plus spatial boundary conditions }.

(6)

It is assumed that an orthogonal basis exists for S with respect
to (,) which is denoted by (e;]. The orthogonal complement
of § is denoted by §°. § is divided into two classes depending
on how G acts on §. If there exists a u € § such that Gu €
S°™ then § is class I. Otherwise, S is class IL.

3 Free Vibration Analysis

Initially consider the second-order system (1) with f = 0.
Assume an admissible response of the form

u = Re{y(x)e") (7

where x is the spatial variable. The eigenvalue problem about
the equilibrium u = 0 becomes

N My + NG + K = 0 (8)

plus boundary conditions. At A = 0, the solution of (8) is given
by
N
¥ =X de ©)
i=1
for arbitrary d; and N = 1.

The inner product of (8) with  gives a quadratic equation
whose roots are (Shieh, .1971)

N =3i(g = Vg* + 4k) (10)

 is normalized by (M, ) = 1, g = (iGif, ), and k = (Kip,
¢y The symmetries (2) ensure that g and k are real. Critical
eigenfunctions exist when k = 0 and therefore A = 0. (The
other solution in (10), given by taking the + sign, gives A =
ig which is not critical nor pertinent to the following discussion.)
The existence of complex eigenvalues depends on the value of
g and the sign of k. If g = 0 and k < 0, the eigenvalues are
complex. If g # 0 and k is sufficiently small, the eigenvalues
are imaginary, If the eigenfunctions are known, the values of k
and g can be determined, However, if the eigenfunctions are
known, so are the eigenvalues, and (10) does not provide new
information.

Now consider the first order system (5) with q = 0. For
admissible response about w = 0 assume

w = Re{[¢i(x) ¢2(x)1"e}. (1)
This leads to the eigenvalue problem
MD + BP =0 (12)

plus boundary conditions where ® = [, ¢,]". At X =0, (12)
requires B® = 0, which is equivalent to the two scalar equations

Journal of Applied Mechanics

K =0 Ko, = —Go,. (13)
The assumption that A = 0 ensures that S is nonempty. The
solution for the first of equations (13) is therefore

b = 2 cie; (14)

where the constants c; are, for the moment, arbitrary and N =
1. ¢, must satisfy

N .
K¢, = — 3 ¢,Ge,. (15)

J=1

Because K is symmetric, the solvability condition requires that
the right-hand side of (15) be orthogonal to S (Stakgold,
1979)". Hence, the c; are not all arbitrary in general. If Ge; €
Set then c; is arbitrary. If, however, Ge, is not a member of
S then solvability requires ¢; = 0. With this understanding,
the solution ¢, is

b2 =, + 2 d;e;

=1

(16)

where ¢, is a particular solution of (15) when the c; are selected
to render (15) solvable and the d; are arbitrary.

The eigenfunction ® represents a time independent displace-
ment, ¢,, and a time-independent velocity, ¢,. The magnitude
of the velocity ¢, is either identically zero if § belongs to class
I1, or arbitrary if § belongs to class 1. The homogeneous form
of problem (1) admits the solution

U=+ dit.

Although (17) is a solution of (1) with f = 0, it is not an
eigenfunction of (8), derived from the assumed motion (7).
Under (7) the eigenfunction with A = 0 is given by (9) which
is not identical to (16). Hence there is not a one to one corre-
spondence between the critical eigenfunctions of the second
order system using (7) and the critical eigenfunctions of the
first-order system using (11). The consequences of this insuffi-
ciency to system stability are examined in the following section.

amn

4 Eigenvalue Behavior and Stability

The possible forms of critical eigenfunctions lead to a conjec-
ture on the behavior of the eigenvalue locus of a critical eigenso-
lution as a system parameter is varied from its critical value.

Conjecture: (1) If all critical eigenfunctions @ have ve-
locities ¢», which are identically zero (class II), then the eigen-
value locus is imaginary for both increases and decreases in
any critical system parameter.

(2) If any critical eigenfunction ® has a nonzero velocity
¢, (class 1), then the eigenvalue locus is complex with nonzero
real part for some change in any critical system parameter (ei-
ther an increase, a decrease, or both).

For many commonly studied gyroscopic systems, the above
conjecture is true and allows prediction of the behavior of the
eigenvalue loci near a vanishing eigenvalue without extensive
computation. Consider the following examples:

1 A tensioned string translates along its length and is pinned
at its ends such that the transverse displacements at x = 0 and
x = 1 are zero (Wickert and Mote, 1990). The dimensionless
velocity is v, and M, G, and K are

' We assume the range of X is closed so that the solvability condition is both
necessary and sufficient.
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Fig.1 Eigenvalues of a clamped-pinned, axially moving beam as a func-
tion of velocity. u? = 100. The critical translation speeds are marked by
the arrows. The numbers in parentheses on the imaginary curves indicate
the number of interior nodes in the corresponding eigenfunction.

0 2 a?
- - - l
M= G=2v— K= (v"— l}—-—-—2 (18)

X

where I is the identity operator. Critical speed is v = 1 where
K = 0. Clearly when K = 0, the equation K¢, = —Geop, is
insoluble for ¢,. § is spanned by

e = sin (jmx) j=1,2,3 +-- (19)
S is empty so G acting on § never returns members of §°™,
S is class II and the eigenvalues are imaginary for v in the
neighborhood of v = 1.

2 A tensioned beam translates along its length at velocity v
subject to either clamped or pinned boundary conditions at x =
0 and x = 1. With the dimensionless tension denoted by 12,
M, G, and K are (Wickert and Mote, 1990)

9
M=1 G=2— =

S is nonempty only at specific velocities at which it contains
one element satisfying Ke; = 0. It is assumed in all Examples
that $*™ is spanned by all the noncritical eigenfunctions and
that § U S°* is complete. The solvability condition reduces to

(Gey, e)) =2uf e e dx = v(e)?s = 0. 21

1]

Hence as long as the displacements at x = 0 and x = 1 vanish,
S is class I, critical eigenfunctions exist with arbitrary velocity,
and the eigenvalues are complex near critical speed. Figure 1
shows the frequency spectrum for a clamped-pinned beam with
@* = 100 which confirms the prediction. Although both diver-
gence and flutter instabilities exist above the first critical speed,
the conjecture addresses only those instability regions which
begin or end with vanishing eigenvalues (i.e., the divergence
instabilities ).

3 An axisymmetric disk rotating at speed {2 is described by
the operators (Iwan and Moeller, 1976)

118 / Vol. 63, MARCH 1996

M=1 G=2!.'!i

af
0?2 1o d 1 a2
—_ 4 B i L iy QT PLe iy
K= oo (m’ ar) 7300 51 (22)

where V* is the biharmonic operator, g, and g, are the axisym-
metric radial and hoop stresses, and the disk domain is described
by polar coordinates (r, ¢) fixed in the nonrotating frame of
reference. Under appropriate boundary conditions this system
possesses critical speeds with a fixed number of nodal diame-
ters, n, where n is greater than one (Iwan and Moeller, 1976;
Renshaw and Mote, 1992). The elements of S can be written
in alternative forms of which any two are linearly independent.

h(r) cos (nf), h(r)sin (n8), h(r)e™, h(r)e™ (23)

Note that the value of g at critical speed in (10) depends on
which eigenfunction in (23) is used. However, regardless of
the critical eigenfunction used, G operated on it never gives an
element of $”". Hence S is class II and the eigenvalues are
imaginary near critical speed. The eigenvalues of a disk clamped
at inner radius r = 0.1 and free at » = 1 are shown in Fig. 2.
As the eigenvalues exist in complex conjugate pairs, only the
non-negative one of each pair is shown.

4 Consider predicting the eigenvalues of the disk in Example
3 using Galerkin’s method and suppose the trial functions se-
lected are proportional to cos (n#) only (i.e., the trial functions
are not proportional to sin (n#)). For n = 1, all members of
G operating on § are elements of §°* which makes S class I.
According to the conjecture, the critical eigenvalue will be com-
plex near critical speed. This is proved by noting that application
of Galerkin’s method with cos (n#) eliminates the contribution
of G through the orthogonality (Gw,,, w,,) = 0 for all m and n
where w,, is a trial function with m nodal diameters. The pre-
dicted eigenvalues are identical to those obtained when G = 0,
which is a self-adjoint eigenvalue problem that exhibits diver-
gence instability.

5 An axisymmetric rotating disk is subjected to a fixed, sta-
tionary, transverse spring of spring constant £’. The operators
of this system are identical those of Example 3 if K is modified
to

2
Ii’=V"+§ZZa—Z—l_i rari)
a6 rar or

i @
—;Jﬂé? + k b(r - ?‘9)5(9){‘1'

(24)

Im (1)

S—"
J"I
Fig. 2 Eigenvalues of an axisymmetric rotating disk clamped at r = 0.1
and free at r = 1. The eigenvalues are imaginary, complex conjugate
pairs. Three critical speeds are indicated by the arrows. The numbers in
parentheses indicate the number of nodal diameters in the correspond-

ing eigenfunctions. For the eigenvalues shown, all corresponding eigen-
functions have zero nodal circles.

0 2 4
Rotation Speed Q

Critical Speeds

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig.3 Eigenvalues of the axisymmetric rotating disk of Fig. 2 loaded by
a spring of stiffness 500 located atr = 0.8, 6 =0

where &( ) is the delta function and the spring is located at r
= r,, # = 0. At any critical speed of the system in Example 3,
the presence of the spring eliminates one of the two linearly
independent critical speed modes (23). S is therefore spanned
by

e, = h(r) sin (nd). (25)
Because Ge, € §”™, Sis class I and the eigenvalues are complex
near critical speed. This is illustrated in Fig. 4 for a system
identical to Fig. 3 except that k' = 500 and r, = 0.8. Galerkin’s
method was used to determine these eigenvalues with trial func-
tions up to and including four nodal diameters. Both divergence
and flutter instabilities are observed and the number of critical
speeds is greater than in Fig. 2. However, each critical speed
in Fig. 2 also appears in Fig. 3 as a complex eigenvalue locus
near critical speed. This is consistent with the conjecture.

0.001
2
E
o 1]' T
mmma WW

=4
2

S 3378 a3

Rotation Spesd, D

Fig. 4 Eigenvalues of Example 6, an axisymmetric rotating disk loaded
by a stationary spring whose stiffness increases quadratically with rota-
tion speed away from the first critical speed of the axisymmetric disk
(see Fig. 2)
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Critical Spoads

i ‘ . . . l 1|'. :r
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Fig. 5 Eigenvalues of an axisymmetric rotating disk that is loaded by a
stationary spring and is allowed rigid-body translation and tilting

6 The following system is designed to partly test the ro-
bustness of the conjecture. Modify the system in Example 5 by
tuning the spring stiffness to one of the critical speeds, (2,,.

k' = kL (2 - Q)2 (26)

At ) = Q,,, the system is identical to that in Example 3 for
which the eigenvalue locus is imaginary. However, away from
1 = ()., the system is that in Example 5 for which the eigenvalue
locus is complex. Figure 4 shows a magnified view of the
eigenvalue locus near the first critical speed of Example 3: Q,

= 437500 and k) = 500. The stiffness k¥’ perturbs the original
critical speed solution into two critical speeds. The first remains
at 4.37500 and the eigenvalue locus in the neighborhood of this
speed is imaginary as predicted. The second critical speed is
slightly greater than 4.37500 and the eigenvalue locus in its
neighborhood is complex. Hence, within the accuracy of the
Galerkin solution, the conjecture is satisfied.

7 Consider the system in Example § with the disk driven on
a spindle by splines that allow it to freely slide along the spindle
rather than being clamped rigidly at the inner radius. This sys-
tem models a guided, free-center circular saw in common use
(Mote, 1977). At any critical speed of the unclamped system,
§ is spanned by

e, = h(r)sin (n8), e, = h(r,) — h(r)cos (nd). (27)

(h(r) is similar to the radial distribution of the critical speeds
of Example 3, but not necessarily equal since it does not satisfy
the same boundary conditions at » = k.) G applied to § is not
a member of $”™ and S is class IL. Therefore the eigenvalues
are imaginary as they pass through all critical speeds. Figure 5
shows the eigenvalues for the system in Fig. 3 with the disk
allowed to translate and rotate rigidly. As predicted by the con-
jecture, the eigenvalues are imaginary across all critical speeds.

5 Discussion

The coalescence of an eigenvalue and its complex conjugate
(which is not shown in the figures) occurs at critical speed.
Hence, A = 0 is always a repeated eigenvalue. The generaliza-
tion of the admissible motion for m repeated eigenvalues is

u=[Yn(x) + Wa(x) + o+ 1" g (0)]e™  (28)

(Shieh and Masur, 1968). With A = 0, this generalization is
analogous to the generalized eigenvectors obtained from a ma-
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trix with repeated, vanishing eigenvalues. When the Jordan ca-
nonical form is diagonal (i.e., the null matrix), the matrix de-
scribes a class II problem since the exponential of the matrix
is a constant. When the Jordan canonical form has unity on the
off diagonal, the matrix describes a class I problem because the
exponential of the matrix gives a solution similar to (17).

The conjecture may extend to merging eigenvalue loci which
do not occur at A = (. However, the calculations involved in
determining the eigenfunctions when A\ # 0 appear to prohibit
any useful insights. For example, at the onset of flutter instabil-
ity the eigenfunctions have the generalized form described in
(28) with m = 2. Substitution of (28) into the homogeneous
form of (1) gives

N2Mi, + NG, + Kip, = 0 (29)

MMy, + NGy, + Kifpy = —2\Myr, — Gy, (30)
Because the value of \ is not known, this problem is as compli-
cated to solve as the original one. Further, the first-order repre-
sentation of the equation of motion is not a simplified formula-
tion. Numerical computation is required to find these solutions.

The conjecture does not distinguish whether the system pa-
rameter must be increased or decreased in order to produce
complex eigenvalues when § is class 1. However, when K is
positive definite, the system eigenvalues are imaginary. For
many systems such as rotating disks and translating strings and
beams, K is positive definite until the first critical speed is
reached. Consequently, complex eigenvalues and divergence
instability can only occur above the first critical speed, not
below. The conjecture, then, predicts whether or not this hap-
pens.

Perturbation methods do not offer a convenient method to
establish conditions under which the conjecture is true. When
the eigenvalue is considered as a function of the system parame-
ters, the critical system parameters are branch points of that
function (Bender and Orszag, 1978; Chen and Ginsberg, 1992).
In fact, formal perturbation of a critical eigenvalue always pre-
dicts imaginary eigenvalues.

No counter examples to the conjecture have been found for
which the system operators vary in a continuous manner. How-
ever, if discontinuous system operators are allowed, counter
examples are easily constructed by juxtaposing different system
operators at the critical values of system parameters. Any proof
of the conjecture must therefore restrict the continuity of the
system operators.

The results discussed are applicable to both continuous and
discrete systems. For both systems, the conjecture is most useful
when the approximate critical eigenfunctions are known. In
these cases the influence of proposed modifications on the criti-
cal eigenvalues can often be assessed without extensive compu-
tation. For example, if the free-free disk of Example 7 is to
be supported by multiple springs, the conjecture predicts that
divergence instability is avoided whenever some combination
of rigid translation and tilting of the disk produces two, linearly
independent critical eigenfunctions involving no deflection of
the springs. Accordingly, any disk suppotted by three or fewer
springs, in any arrangement, avoids divergence instability be-
cause the three degrees-of-freedom represented by rigid-body
translation and tilting permit two linearly independent critical
eigenfunctions to exist. If four springs support the disk, diver-
gence instability occurs except for critical eigenfunctions with
4, 8, 12, . .. nodal diameters. If the disk is only allowed rigid
translation without tilting, then divergence instability is avoided
at the first critical speed only if the springs are located at inter-
vals of 27r/n, where n is the number of nodal diameters in the
first critical eigenfunction. (The authors thank the anonymous
reviewer for his comments on this example.)
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6 Summary and Conclusions

1 Critical eigenfunctions have vanishing eigenvalues and
describe both constant displacement and the displacement de-
rived from a constant velocity. These eigenfunctions are ex-
cluded by the assumption of harmonic vibration in a second
order formulation of the equation of motion of a gyroscopic
system. However, these eigenfunctions arise naturally from the
assumption of harmonic vibration in a first order formulation.
It has long been recognized that the representation of eigenfunc-
tions of repeated eigenvalues, such as critical eigenvalues, re-
quire more general formulations than simple harmonic vibra-
tion. The contribution of this study is to note that such a general-
ization is not required for a first-order formulation of gyroscopic
systems and to relate the different kinds of eigenfunctions to
the system stability.

2 The following conjecture is proposed to predict whether
the eigenvalue locus of a critical eigenfunction is imaginary or
complex in the neighborhood of critical system parameters:

If all critical eigenfunctions have velocities which are identi-
cally zero, then the eigenvalue locus is imaginary in the
neighborhood of the critical values. If any critical eigenfunc-
tion has a nonzero velocity, then the eigenvalue locus is
complex.

3 The conjecture is shown to be true for many commonly
studied gyroscopic systems and no counter example with contin-
uous system operators has yet been found. No proof is furnished
although it is clear that a proof requires conditions on the conti-
nuity of the system operators. The positive test cases examined
here suggest that the conjecture may be true for most gyroscopic
systems derived from physical models.

4 The value of the conjecture for engineering purposes is
its application to stability prediction. These predictions can of-
ten be based on an approximate knowledge of the shapes of the
critical eigenfunctions. Not only does this reduce the numerical
effort required to predict system stability, but it also can help
guide system design to improve, control, or avoid degrading
system stability.
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This paper predicts transverse vibration and stability of a rotating circular plate
subjected to stationary, in-plane, concentrated edge loads. First of all, the equation
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of motion is discretized in a plate-based coordinate system resulting in a set of
coupled Hill’s equations. Through use of the method of multiple scales, stability of
the rotating plate is predicted in closed form in terms of the rotational speed and
the in-plane edge loads. The asymmetric membrane stresses resulting from the station-

ary in-plane edge loads will transversely excite the rotating plates to single-mode
parametric resonances as well as combination resonances at supercritical speed. In
addition, introduction of plate damping will suppress the parametric instability when
normalized edge loads are small. Moreover, the radial in-plane edge load dominates
the rotational speed at which the instability occurs, and the tangential in-plane edge
load dominates the width of the instability zones.

1 Introduction

Vibration and stability of rotating, circular, Kirchhoff plates,
subjected to various boundary conditions, loading and excita-
tions, thermal environments, and asymmetry, have been ana-
lyzed extensively in the literature to predict response of com-
puter disk drives, circular sawing rigs, and other rotating ma-
chine components.

In computer disk drives, rotating disks are sandwiched by a
pair of read/write heads, which are often modeled as a station-
ary spring-mass-dashpot system. Vibration of disk drives, in
general, are not desirable, because it will limit the area density
of the disk drives and will increase the chance of the heads
crash into the disks. On the other hand, the disk drive industry
has been trying to increase the rotational speed of disk drives,
because higher rotational speed implies higher data access rate.
Existing literature, however, has shown that higher rotational
speed results in larger vibration and possible instabilities of
the disk drives, especially when the rotational speed exceeds a
particular limit called critical speed. For example, Iwan and
Stahl (1973) analyzed transverse vibration of a stationary
Kirchhoff plate subjected to a rotating spring-mass-dashpot sys-
tem. They found that the stiffness, inertia, and damping of the
read/write head can excite the disk to instability of different
natures at supercritical speed. Iwan and Moeller (1976) modi-
fied this model and included centrifugal in-plane stresses to
predict vibration and stability of a rotating disk subjected to a
stationary spring-mass-dashpot system. Shen and Mote (1991,
1992) used a coordinate system fixed to the rotating plate and
concluded that the stiffness and the inertia of the read/write
head parametrically excite the system to resonances, and the
damping of the read/write head serves as negative damping at
supercritical speed destabilizing the system. Ono et al. (1991)
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and Chen and Bogy (1992a, 1992b) studied how the stiffness,
inertia, and damping of the read/write head affect vibration and
stability of a rotating circular plate from a coordinate system
fixed in the space. To suppress these instabilities, Shen (1993)
introduced damping treatments to circular plates and demon-
strated that the plate damping can suppress parametric reso-
nances caused by small stiffness of the read/write head.

Similar problems arise in circular sawing rigs. In sawing rigs,
rotating circular saws are sandwiched either by a stationary fluid
film bearing to position the saw or by the workpiece during
cutting process. Such a system is also commonly modeled as a
rotating circular plate subjected to a stationary spring-mass-
dashpot system. Similar to disk drives, vibration of saw blades
is not desirable, because it results in inaccurate machining,
waste of raw materials, and excessive wear and early fracture
of the saws. Although vibration of sawing rigs becomes severe
as rotational speed increases, sawmills have been trying to oper-
ate their sawing rigs at increased rotational speed, because
higher rotational speed implies higher productivity.

Compared with disk drives, sawing rigs have their unique
factors to consider, For example, boundary conditions are a big
concern in circular saws. Sawmills use circular saws whose
inner rim is free and floating on the arbur, called floating collar
saws. The semiconductor industry often uses a circular saw that
is fixed at outer rim to cut silicon ingots through a central hole
of the saw (Chonen et al., 1993). In addition, thermal membrane
stresses resulting from cutting process can change natural fre-
quencies and vibration mode shapes of the saws (Mote, 1967).
Severe thermal environments can produce large in-plane ther-
mal stresses that buckle a saw ( Yu and Mote, 1987). Moreover,
in-plane membrane stresses are often introduced purposely by
rolling the plate to create plastic deformation (Mote, 1965).
The purpose of rolling is to increase natural frequencies and
the critical speed of the saws, so that the saws can be operated
at increased rotational speed.

Though much research has been done in this area, vibration
and stability of rotating saw blades under cutting conditions,
however, remain open. In general, in-plane loading creates in-
plane membrane stresses, which subsequently affect both in-
plane and transverse vibration of the rotating plate. For example,
Srinivasan and Ramamurti (1980) and Leung and Pinnington
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(1987) calculated free and forced in-plane vibration response
of rotating disks subjected to in-plane edge loads. For lateral
vibration, researchers have found that stationary in-plane edge
loads create an asymmetric stress field in a nonrotating circular
plate. The asymmetric stress field will change natural frequen-
cies of the circular plate, and therefore the critical speed and
buckling load (Carlin et al., 1975; Radcliffe and Mote, 1977).
For rotating plates subjected to stationary in-plane loading,
Chen and Bogy (1993) showed by sensitivity analysis and nu-
merical computation that the asymmetric membrane stress field
in a spinning disk by a stationary circumferential friction force
has no effect on the stability of the transverse vibration of the
disk except at specific rotational speeds. At or near those spe-
cific rotational speeds, the sensitivity analysis fails and no con-
clusions on the stability can be made. Also Chonen et al. (1993)
showed by numerical simulation that in-plane slicing load, in
general, has no noticeable effect on frequencies and stability.
Later on, Chen (1994) showed that a rotating disk, subjected
to a radial, in-plane, concentrated edge load, can undergo insta-
bility in transverse vibration at specific rotational speeds. If the
radial in-plane load is a follower force, the instability results
entirely from the asymmetric membrane stresses. If the radial
in-plane load is conservative, the instability results partly from
the asymmetric membrane stresses (<5 percent) and primarily
from boundary effects. Chen (1994), however, did not predict
analytically the rotational speed at which the instability occurs,
nor did he explain the mechanism of the instability.

In light of Chen’s work (1994), this paper presents research
results independently performed by the authors (Song, 1993) to
demonstrate that the asymmetric membrane stress field resulting
from the stationary edge loads can excite a rotating circular plate
transversely to parametric resonances at particular rotational
speeds. In addition, this paper predicts analytically the rotational
speed at which the instability occurs and the width of the insta-
bility zones through use of the method of multiple scales. More-
over, this paper suggests that plate damping will suppress the
instability when normalized edge loads are small.

Existence of parametric resonances of a rotating plate sub-
jected to stationary asymmetric membrane stresses can be dem-
onstrated as follows. Consider a plate-based observer rotating
with the circular plate. Because the plate is rotating and the in-
plane edge loads are stationary, the plate-based observer will
see a rotating asymmetric membrane stress field produced by
the stationary in-plane edge loads. Therefore, the plate-based
observer will experience a periodic change in plate stiffness. If
the rotational speed is appropriate, small transverse disturbances
will excite the plate to primary and combination resonances
transversely.

It should be noted that the results reported in the existing
literature (Chen and Bogy, 1993; Chonen et al., 1993) do not
contradict the results presented in this paper. A quick review
of the existing literature shows clearly that Chen and Bogy
(1993) assumed the rotational speed being far away from para-
metric and combination resonances, and Chonen et al. (1993)
used a too small normalized edge load in their simulations to
find the instability zones numerically. Results from Chen and
Bogy (1993) and Chonen et al. (1993) will be discussed in
detail in this paper to reveal how the present paper complements
their previously work in this area.

In this paper, the equation of motion from Chen and Bogy
(1993) is discretized in a coordinate system fixed in the space
resulting in a set of coupled, second-order ordinary differential
equations with constant coefficients and gyroscopic terms.
Through a transformation to a coordinate system fixed to the
rotating circular plate, the gyroscopic equations become a set
of coupled Hill’s equations with periodic coefficients. Then the
coupled Hill’s equations are solved analytically through the
method of multiple scales. Existence of secular terms deter-
mines the frequencies at which parametric resonances occur.
Elimination of the secular terms then predicts how the width
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of instability zones depends on the rotational speed and the
magnitude of the in-plane edge loads. The frequencies and
widths of parametric instabilities are determined for both un-
damped and damped circular plates. Finally, results obtained
from the method of multiple scales are illustrated numerically.
How normal and tangential edge loads and plate damping affect
the parametric resonances are also discussed.

2 Formulation

Consider a linear, homogeneous, isotropic, elastic, axisym-
metric, circular plate rotating at constant speed (2 and subjected
to stationary in-plane edge forces P and T as shown in Fig. 1.
Let (r, 8, z) be a stationary coordinate system fixed in the space
and (r, ¢, z) be a coordinate system fixed to the rotating plate.
Also, let w(r, 8, t) be the plate deflection and let p and h be
the density and the thickness of the plate, respectively. In addi-
tion, the plate may be fixed, free, or simply supported at inner
boundary (r = a) or outer rim (r = b).

The equation of motion of a rotating plate subjected to a
symmetric centrifugal stress field 0¥, o4 and an asymmetric
membrane stress field o,,, o4, and 7,5 is (Chen and Bogy,

1993)
a*w a*w a*w
B LY _202W o0
P (aﬁ 9100 aa?)

+ DV'w + phLyw + Lyw = 0 (1)

where D is the flexural rigidity of the plate,

hd aw ho§ &*w
Li=-=(oprZ) -2 2
: rar(" ! ar) 2 967 2)
and
h| @ ad
=—-=|—= — et
L, [6‘!‘ (-"Urra Tro 39)

P a1 o
LI NS N
+ae(”ar r"”aa)] )

The explicit expressions of ¢,,, o4, and 7,4 are given by Carlin
et al. (1975) for the radial load P, and are shown in the Appen-
dix for the tangential load T (Song, 1993). In addition, (1) has
to satisfy boundary conditions at » = ¢ and r = b, The boundary
conditions may take several different forms, depending on
whether the in-plane edge loads are conservative or not (Chen,
1994).

The equation of motion can be discretized through an eigen-
function expansion

Fig. 1 A rotating circular plate subjected to in-plane edge loads
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w(r,0,0) = 2 X Yulr, 0)Au(1). (4)

m=0 p=-=
Here if,,,(r, 8) is the (m, n) complex mode shape of the corre-
sponding, stationary, axisymmetric elastic plate subjected to
centrifugal membrane stresses o ¥ and o, i.e., i, satisfies

Dv"f’uml + phLlwﬂtﬂ = w?ﬂ'ﬂ phlﬁil"r ( 5 }
where w3, is the natural frequency of mode (m, n). Notice that
. Ru(r)e™
i r. 9) = m,—n r‘ e E 6
W Tuen(r, 8) = =2 (6)

where R,,,(r) is a linear combination of Bessel’s functions satis-
fying the boundary conditions at » = @ and r = b. Moreover,
R,.,(r) is normalized such that

L Phfl, (X)), (r)dA

= J; pklﬁm.—u(r)lﬁm(r)dA = 6":;!6:1:; (7)
and

f 'I’::::J[Dv4d’;uf + PhLll;’pq]dA = 5»415::91&)3»" (8)
A
where the integration is carried out over the disk domain A.
Also notice that both R,,(r) and w?, depend on the rotation
speed (. Moreover, A,,(¢) in (4) is the complex generalized
coordinate associated with ., (r, #) satisfying A, (1) =
A, (1), where the overbar denotes the complex conjugation.
In discretizing Eq. (1), great care must be taken in handling
the boundary conditions. If the edge loads are follower forces,

then S E Yun(F, 8)A,.(2) in (4) will satisfy the boundary

m={ pew

conditions of (1) (Chen, 1994). Therefore, it is legitimate to
substitute (4) into (1), premultiply (1) by ., integrate (1)
over the disk domain A, and apply the orthogonality conditions
(7) and (8) to obtain

w w

Apw — 2in0A,, + (w2 — 120D A + 2 2 Counpghpg =0
p=0 g=—o
m=01,..., n=0,=xl, £2,... (9)

where

Cm"!"‘? = CF‘M‘“ = J; aumlal,!'lmdﬂ

A dr or r

i'_g aa}mﬂ a[‘bpq
ag a0

r ar  of 08 or

Therefore, follower edge loads will affect the stability only
through the asymmetric membrane stress filed characterized by
coefficient C,,,-

If the edge loads are conservative and do not change their

directions during the transverse vibration, then 2 2 i, (r,
m={ n=—o=
#)A,.. (1) in (4) will not satisfy the boundary conditions of (1)
(Chen, 1994). In this case, one way to discretize (1) is to
transform (1) and its boundary conditions into an integral equa-
tion. Then the integral equation is discretized through (4). The
resulting equation will be identical to (9) with an additional
term from the boundary conditions. Therefore, conservative
edge loads affect plate stability through both the asymmetric
membrane stresses and the boundary. Since the purpose of this
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+B(%%+%%)]Mi. (10)

paper is to demonstrate the instability resulting from the asym-
metric membrane stresses, only Eq. (9) will be addressed in
the sequel.

Equation (9) is the governing equation in a stationary coordi-
nate system (i.e., from a ground-based observer) and has con-
stant coefficients. This governing equation, however, loses its
positive definiteness at supercritical speed and makes closed-
form predictions of instability regions very difficult. To facili-
tate analytical predictions, the governing equation (9) can be
written in a coordinate system fixed to the rotating plate (i.e.,
from a plate-based observer) with the coordinate transformation
g = ¢ - Q! and th(f) = EFMHIAMH(I)! where qmu(r) is the
generalized coordinates associated with the mode shape ., (r,
¢) in the rotating coordinate system. Therefore, (9) becomes

Gen(t) + Win@un(8) + X X Counpg™ g, (1) = 0
Pl g
m=01,...; n=0,*1, 2, ...

(11)

for the plate-based observer. Moreover, the plate axisymmetry
requires that
wﬂ’lil = wM.—!I!

RF""(r] = RHL—FI'(r)’
Gun(1) = Gon (1)

To normalize (11), let w,, be the critical speed of a circular
plate defined as

(12)

1 1 : mi Sz
W,, = min {Q satisfying 2 = W (£2) .
n

m=0,l.2...‘;n=l,2,...}. (13)

In addition, let

Q C
T = Wel, ﬂnm = Lo v W= EKChupg = L;’"i { 14)
or w‘.’i’ w!?f
where
P T
€K = == r T (15)
prhb w;, pThb w;,

is a small load parameter associated with the normal or tangen-
tial edge loads." Through the normalization above, the plate-
based governing Eq. (11) is normalized as

d2QHIN 2 - 1
2 . {g—n) -
d 2 + ﬁmﬂ?um + E 2 EK{'nmmel ama W’q;:q = 0
T p=0 g=—w=

m=0,1,2;:::; m=x} 22 ..

(16)

When viscous plate damping is present, an additional term

< ¥ dqp,
dm:: =T
g3 ™ dr

p=l g=—=

17)

will appear in (16), where d,,,,, is the modal damping coeffi-
cient. A simplified model is lightly damped Kelvin viscoelastic
plate (Shen 1993). In this case,

' The assumption of small ek is made to facilitate analytical predictions of
stability through the method of multiple scales. For large ex, the method of
multiple scales will only give the first-order approximation. The assumption of
small ex is, in fact, reasonable for many applications. For example, Chonen et al.
(1993) measured the radial slicing load P = 36.18 N and the tangential slicing
load T = 9.65 N for a saw witha = 12.0cm, b = 31.25cm, h = 0.15 mm, v =
0.28, p = 7.84 x 10" kg/m®, E = 1.99 x 10" Pa, and w,., = 1550 rpm. The
resulting ex is 0.0122 for the radial slicing load P and 0.00325 for the tangential
slicing load T
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d:m:m = €p6mp6nqﬁ %m ( 18 }

where ey is a small damping parameter. Therefore, the equation
of motion of the damped plate will be

d
+ €l Em ﬁ_" + ﬁﬁm‘?mﬂ

d’Gumn
dr?

ig—n) _
+ 3 Y eKCupe g, =0

p=0 g=—2

m=0,1,2,...; n==x1,%2,.... (19)
3 Stability Analysis

The method of multiple scales is used to predict the stability
of (19). Assume that

Qun(T) = g (7, T1) + €gl) (T, T)) + .. (20)
where T, = er. Substitute (20) into (19) to obtain
(D§ + B =0 (21)
and
(DG + Bun)qid = —Do(2Dy + pBrn)qm
ST T Ko G (22)
p=0 g=—s

where D, = d/d7 and Dy, = d/9T,. Solve (21) to obtain

qim = Apa(T\)em + By (T )e o, (23)
Notice that ¢, (7) = G -.(7) resulting in
Apan(T) = Buy(7)s Bpon(7) = Apul(7). (24)

Substitute (23) into (22) to obtain
(DEl + ﬁim)q::'nln] = —iﬁm“(2D| + P’ﬂﬁm)
X [Apn(T1)e?m™ — B (T )e ™ Pm]

- z Z "(C-rmpqe‘(q_nwr

p=0 g=-ue
X [Apg(T1)e®n™ + Boo(Ty)e #u]. (25)

Consider a vibration mode g,,(7), parametric resonances
involving only a single-mode g,,,(7) may occur at 2nw = 28,,,,
n > 0. Combination resonances with mode (p, ) may occur
at two different speeds: (¢ — n)w = B, + Bp, g >n =0
and (g + n)w = By + Bpgr g > 0,n = 0, n # g. The stability
of an undamped plate (i.e., 4 = 0) is derived as follows.

3.1 Single Mode Parametric Resonance at 2nw = 28,
+ eo, n > 0. When 2nw = 28,,, secular terms in equation
(25) is
ST = _2£18mnDl{AmnejﬁmT = ane_mmnr)

= Kcmnwrx(Amnem“'T b an’e_mm-r)
= KConm,- J'x““m.—:1"‘3Iﬁ"""'w_“‘”.J d

(26)

To obtain bounded solutions g\, elimination of secular terms
in (26) results in

~2iBn D1 A — (27)
2iﬁmnDIan = Kcmnuman = KCumum,- !!B_mne"m‘r' =0 (28)
where (24) has been used. From Eq. (27),

KConmnAmn = 0

Am(T)) = o exp{f Ko T.} (29)

2B
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where ¢, is a constant of integration. Since c,,,, is Hermitian,
Conn 18 real; therefore, A,,, (7)) is always oscillatory and
bounded. To solve Eq. (28), assumed that (Nayfeh and Mook,
1987)

B, (T)) = [x(T)) + iy(T)) e 1=/30, (30)
Substitute (30) into Eq. (28) to obtain
2Bun% + (0Bun — KCummn + KR[Copm-n])y
~ k[ Cpm-n]x =0
2BmY + (= 0By + KCpumn + KR[Coaom-n])%
— kI Cmum-nly = 0. (31)
Therefore, x and y have unbounded response when
| o el L (32)

3.2 Combination Resonance at (g — n)w = B,, + B,
+ €. When (g — n)w =~ f,, + B, the secular terms of
(25) are

ST = _'2l'ﬂP"."Dl I.AH}He I‘IBMT - B}H’He - ;IB"‘"T]

= KCoumn (A o™ + B,y Prn™)
— KCpupg By P07, (33)
Existence of bounded g/, requires that
~20Bmn D1 Amn = KCommaBAmn — KConpgBpae™t = 0 (34)
and
2iB,umD\ By — KCpmn B = 0. (35)
Similarly, existence of bounded g}’ requires
~2iBpeD1Ap; ~ KCpapgApg = 0 (36)
and
2iBy D1 By — KCpopgBpg — KCpmnAmee "1 = 0. (37)
Equation (35) has the following solution:
B = ¢\ exp{f KZCJT: T.} (38)

which is oscillatory and bounded. In addition, (36) has the
following solution:

KE,
Ay, =08 - =BT 39
which is also oscillatory and bounded.
To solve (34) and (37), assume that
AJ’NH = ae‘:\'r]
- (40)
B,, = be'"™ 7",

Substitute (40) into Eqs. (34) and (37), and nontrivial a and
b require that

KCiniin KCpapy
(-5 (- 52)]

12 Crnipg B
+ =0. (41
4ﬂmnﬂpq { )
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Table 1 Normalized frequencies of the first five modes of
a circular plate with a/b = 0.5

Modes (m, n)
IGJINI

(0, 0)
1.77155

0, =1)
1.80766

(0, +2)

2.00000

Notice that instability occurs when JI[\] < 0 implying that

2 2 2 2
(‘.fNHHF" c‘ o i + i K ('.f"f
}0‘—;{(—_}_?.&“1) = JBM 11‘ :p:l ) (42}
2 BB

2.6mn 2,3;»;
3.3 Combination Resonance at (g + n)w = B,,, + B, +
eo. Following the derivation in Section 3.2, one can show that
instability occurs when

a— K( "“M!i!!"! + Cm,r;m) e r61\2rrrr + )Sﬁq K2| Cmup.—q I 2 (43 )
zﬁmr! zﬁpq 2 fmaﬁ;q
3.4 Parametric Instability of Damped Plates. The sta-

bility of a damped plate can be derived in a similar manner
(Shen, 1993). It can be shown that the system response is

unbounded, when
2
K 2 2
5 J 2 |(’.""H‘N‘ ”l - ﬁ ﬂ:"!

L

KCypnmn

44
ﬁrrm ( )

o -

for single-mode parametric resonance at 2nw = 28,, + €o,
when

o — K( CINHHH!
zﬁmn

C,
A PaPg )
26;04:

K % | cmup.q I 2 2
— pt (45)
ﬁmﬁ:’q

for combination resonance at (¢ — n)w = B,, + B,, + €0, and
when

Conrmn Cpgpg )
o - = s o
2ﬁmﬂ 2,6 g

= ﬁﬁm + ﬂ.?;q

2 BrnBrg

for combination resonance at (¢ + n)w = B, + B, + €0,

S ﬁ?ﬂ" + ﬂfz’q
2

LT N

W (46)

4 Numerical Simulations

Five vibration modes are used in the numerical simulation,
They are (0, 0), (0, =1), and (0, *2) modes, where the first
index is the number of nodal circles and the second index is
the number of nodal diameters. As a first approximation, the
centrifugal stress field is not included (Iwan and Stahl, 1973);
therefore, both 8,,, and R,,,(r) are independent of the rotational
speed w. The normalized eigenvalues 3,, are shown in Table
1. The load parameter ex ranges from 0 to .12, The normalized
damping coefficient ey is 0.005 for the damped plate. The ratio
of the inner to the outer rim is a/b = 0.5.

The stability of the plate/load system is predicted numerically
through two different ways. One is the method of multiple
scales described above, the other is an eigenvalue analysis to
be described as follows.

Journal of Applied Mechanics

Notice that (19) can be rewritten for a ground-based observer as

S0 [2 200

where I is the identity matrix, p, q are column vectors with
elementsasq =[...,Au....] and p = (dq/d7). In addition,

A = diag[..., —2inw + euBi,, .. ],
B = diag[. .., B2.(1 — iepnw) — n’w?, ...] + €kl Copql

m=0,12...; n==1,%2 .. ..

The stability of the plate/load system is approximated by eigen-
values of (47), if finite equations of (47) are retained.

The stability diagrams of the plate/load system are shown in
Figs. 2 to 5 on the ex-w parameter plane. The discrete points
within the shaded regions represent unstable systems predicted
by the eigenvalue analysis and the solid lines are stability
boundaries predicted by the method of multiple scales.

Figure 2 shows the instability of an undamped plate subjected
to a normalized radial load ex. Results from the eigenvalue
analysis show four instability zones for 0.5 < w < 2, which
agree with those obtained from the method of multiple scales.
According to the method of multiple scales, the first instability
corresponds to the single-mode parametric resonance of (0, 2)
mode occurring at w = Bp/2 = 1.0. The second instability is
the combination resonance of (0, 1) and (0, 2) modes occurring
at w = (Bo + Bo2)/(1 + 2) = 1.26922. The third instability
is the single-mode instability of (0, 1) mode occurring at w
= fu/1 = 1.80766. The fourth instability is the combination
resonance of (0, 0) and (0, 2) modes occurring at w = (B +
Bo2)/ (0 + 2) = 1.88578. Among the four instability zones, the
(0, 0) + (0, 2) combination resonance has small instability
width and is difficult to detect numerically. Moreover, the re-
sults from the eigenvalue analysis show that the instability zones
not only increase their width but also shift to a lower rotation
speed, when the radial load e is increased. The same result is
predicted by the method of multiple scales, because ¢, and
Cpqpq are both positive for a plate subjected to a radial edge load.
According to (32), (42), and (43), the instability zones shift
to lower rotation speed.

Figure 3 shows the instability of a damped plate subjected
to a normalized radial edge load ek. Introduction of damping
avoids parametric resonances at least for the low load ranges.
The results from the eigenvalue analysis and the method of
multiple scales agree very well to each other.

Figure 4 shows the instability zones of an undamped plate
subjected to a normalized tangential edge load ex. Identical
parametric resonances are obtained, except that the width of
(0, 0) + (0, 2) combination resonance is too small to detect
numerically through the eigenvalue analysis. When the tangen-
tial load ex is increased, however, the rotation speed at which

.0)
+(0,2)
012
2 0,1
N E B
0.08 |
S
0.04 |-
00.9 11 13 1.‘5 11?
]

Fig. 2 Parametric instability of a rotating elastic plate subjected to a
radial edge load P
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Fig. 3 Parametric instability of a rotating viscoelastic plate subjected
to a radial edge load P

the instability occurs remains unchanged, as opposed to the
decreasing rotational speed found in the radial edge load case.
This is because ¢m, 2nd ¢, are both zero for a plate subjected
to a tangential load. According to (32), (42), and (43), the
instability zones will not shift their frequencies. Compared with
Fig. 2, the instability zones caused by the radial load P are
narrower than those caused by the tangential load T'. In other
words, the membrane stresses resulting from the tangential load
T will dominate the destabilization of the plate.

Figure 5 shows the instability zones of a damped circular
plate subjected to a normalized tangential load ex. The damping
suppresses the (0, 2) parametric resonance for 0 < ex < 0.01
and the (0, 1) -+ (0, 2) combination resonance for 0 < ex <
0.3, The plate damping completely suppresses the (0, 1) mode
parametric resonance. Compared with Fig. 3, the plate damping
seems to be more effective in suppressing paramatric resonances
caused by the radial load P.

5 Discussions

The above analysis demonstrates the existence of parametric
instability associated with a rotating plate subjected to stationary
in-plane edge loads. Existing literature, at first glance, seems
to report opposite findings. For example, Chen and Bogy (1993)
wrote: ‘‘We have shown both by analysis and numerical compu-
tations that the in-plane membrane stress field induced in a
spinning disk by a stationary circumferential force has no effect,
at least to the first order, on the stability of transverse vibration
of the disk.”” Also, Chonen et al. (1993) reported that **. . .
the stresses from the in-plane slicing load and the centrifugal
force have no noticeable effects on the frequencies.”” In fact,
these existing results do not contradict what this paper con-
cludes. An explanation is provided as follows.

Chen and Bogy’s conclusion that the in-plane load has no
effects on the disk stability was based on the following sensitiv-
ity analysis:

(0,0)
(0,2) +(0,2)
0.12
0,1) ©,1)
+({0,2)
0.08
b
0.04 |
00.9 11 13 1.5 1.7

(]

Fig. 4 Parametric instability of a rotating elastic plate subjected to a
tangential edge load T
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Fig. 5 Parametric instability of a rotating viscoelastic plate subjected
to a tangential edge load T

ah‘”"" —_ 1 !.C"""N‘ﬂ
- b
T phTwa 4rip. + nw) f R, (ryrdr

(48)

where A, is the eigenvalue associated with mode (m, n) of a
freely spinning circular plate. According to Chen and Bogy
(1992a, b), Eq. (48) will break down when B8,., = nw or B
+ By; = (n = g)w, because the former will result in zero
denominator in (48) and the latter will result in

h«m n = h;m

which is called ‘‘degencrated systems.’” Notice that the rota-
tional speed at which (48) breaks down is exactly the speed at
which the parametric resonances occur.

Chonen et al. (1993 ) used numerical simulations to show that
the in-plane slicing load has no noticeable effect on stability.
According to their simulations, a = 12,0 cm, b = 31.25 cm, &
=015 mm, v = 028, p = 7.84 X 10* kg/m*, E = 1,99 %
10" Pa, and w,, = 1550 rpm. In addition, the outer rim was
fixed and inner rim was free. A combination of normal and
tangential cutting loads was distributed at the inner rim spanning
an angle of 2¢b, = 60 deg, which corresponds to a normal slicing
load P = 36.18 N and a tangential slicing load T = 9.65 N
according to Fig. 2 of Chonen et al. (1993 ). From the normal-
ization (15), ex = 0.0122 for the radial slicing load P and ek
= 0.00325 for the tangential slicing load T'. Because ex is very
small, the instability zones might have been too tiny to be
detected numerically.

As a closing remark, Srinivasan and Ramamurti (1980) and
Leung and Pinnington (1987) do not result in parametric reso-
nances in their papers, because they only consider in-plane vi-
bration of circular plates. For in-plane vibration, the edge loads
and in-plane stresses serve as periodic force excitations, as op-
posed to periodic stiffness excitations in the transverse vibra-
tion.

(49)

6 Conclusions

This paper concludes that the asymmetric membrane stresses
resulting from stationary in-plane edge loads will transversely
excite a rotating circular plate to parametric resonances at partic-
ular rotational speeds predicted by (32), (42), and (43). In
addition, the radial edge load dominates the rotational speed
at which the instability occurs, and the tangential edge load
dominates the width of the instability zones. In addition, intro-
duction of plate damping will suppress the parametric reso-
nances when the normalized in-plane edge loads are small,
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+d, (2 —n—n®)r"]sinnd (50)
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r ¥ r
— ¥ [a,(n* = n)r"* — by(n + n*)r?
n=2
+ e(n + n*)r" + d,(n — n*)r "] cos nf (51)
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r r n=2
+ b(n +n)r "+ (2 + 3n + nHr"
+d,(2 = 3n + n%)r"]sinng (52)
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o
*7 2mh
T
d = e me——
® 2rch

_ T (1+v)a®— (3 +v)b’

8mh (1 + v)b* + (3 — v)a*
_ T (1+v)a*— (3 +wv)b’
T 8xh (1 4+ v)b* + (3 — v)a*
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1 —v
4Th

dy = —

The coefficients a,, b,, ¢c., d. (n = 2, 3, ...) can be obtained
by the following linear equation:

. Appendfx . Ce=1 (53)
The asymmetric stress field of a circular plate subjected to a
concentrated tangential edge load T is found as (Song, 1993)  where
(n —n®)b"?* —(n+nH)b"? (24 n=n?b" (2-n—-n®b™"
Cs (n*=n)b™?* —m*+n)b"? (n + n?)b" (n—n*b™
= (1 + vna™' 1+ v)na™! [4 + (1 + v)n)a"! —[4 - (1 + v)nla™"'
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Exact Boundary Condition
Perturbation Solutions in
Eigenvalue Problems

A perturbation method is developed for linear, self-adjoint eigenvalue problems with
perturbation operators confined to the boundary conditions. Results are derived
through third order perturbation for distinct eigensolutions of the unperturbed prob-
lem and through second order perturbation for degenerate eigensolutions, where
splitting of the degenerate eigensolutions from asymmetry is identified. A key feature,
demonstrated for the plate vibration and Helmholtz equation problems on annular
domains, is that the solutions of the perturbation problems are determined exactly
in closed-form expressions. The approximation in the eigensolutions of the original
problem results only from truncation of the asymptotic perturbation series; no approx-
imation is made in the calculation of the eigensolution perturbations. Confinement
of the perturbation terms to the boundary conditions ensures that the exact solutions
can be calculated for any combination of unperturbed and perturbed boundary condi-
tions that render the problem self-adjoint. The exact solution avoids the common
expansion of the solution to the perturbation problems in infinite series of the un-
perturbed eigenfunctions. The compactness of solution in this formulation is conve-
nient for modal analysis, system identification, design, and control applications.
Examples of boundary asymmetries where the method applies include stiffness nonuni-
formities and geometric deviations from idealized boundary shapes such as annuli
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and rectangles.

Introduction

In many engineering problems, the boundary conditions are
asymmetric and not known precisely. Examples include nonuni-
form, uncertain boundary fixity and geometric deviations from
idealized boundary shapes such as annuli and rectangles. We
present a perturbation method for self-adjoint eigenvalue prob-
lems having perturbation terms confined to the boundary condi-
tions. The perturbed boundary conditions admit stiffness and
geometric asymmetries, and the analytical expansions for the
perturbed eigensolutions permit assessment of eigensolution
sensitivity to ill-defined boundary conditions. General expres-
sions for perturbations of unperturbed eigensolutions having
distinct eigenvalues are derived through third order, and pertur-
bations of unperturbed eigensolutions having degenerate eigen-
values are derived through second order. Degenerate eigenvalue
splitting caused by asymmetry is identified, and the perturbed
eigensolutions associated with the split eigenvalues are deter-
mined. Exact solutions for the perturbation problems are avail-
able provided that particular solutions to certain inhomogeneous
differential equations can be found. The common expansion of
the solutions to the perturbation problems in infinite series of
the unperturbed eigenfunctions is then avoided, and the resulting
simplicity allows extension of the solution to higher orders. The
functional forms of the inhomogeneous differential equations
and the associated particular solutions depend only on the opera-
tor and the shape of the domain, not on the boundary conditions.
Once the particular solutions are known for a given operator
and domain, exact solutions for the perturbations are available
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for arbitrary self-adjoint boundary conditions. To illustrate the
method, the eigensolution perturbations of the plate vibration
and Helmholtz equation problems on annular domains with
asymmetric boundary conditions are determined exactly. Exten-
sion to other operators and rectangular domains is straightfor-
ward. Applications of the method to plate vibration include,
for example, elastic boundary restraints with varying stiffness,
discontinuous boundary supports, variation of the domain
boundary shape from annular or rectangular, and combinations
of these. The eigensolutions for a solid, circular plate with
asymmetric boundary stiffness are compared to a Ritz solution
(Leissa et al., 1979).

Despite the common uncertainty in boundary conditions, gen-
eral treatments of boundary condition asymmetries using pertur-
bation methods are scarce. Selected references concerning per-
turbation of the boundary conditions are provided in (Pierre,
1987), where Pierre obtains expressions for the eigensolutions
of a self-adjoint eigenvalue problem when the natural boundary
conditions are perturbed; degenerate eigensolutions of the un-
perturbed problem are not addressed. In particular, exact solu-
tions for the perturbation problems and the general boundary
conditions for which they apply have not been previously dis-
cussed.

Eigenvalue Problem With Perturbed Boundary Con-
ditions
Consider a linear, self-adjoint eigenvalue problem of order
2p defined on domain P bounded by dP. The boundary condi-
tions are expanded in a power series in small ¢ < |
Ls —N% =0 P
Bis + €Cis + €*Dys + ’E;s =0 aP (1)

where j = 1, 2, ..., p. The linear boundary operators B;, C;,
D;, and E; involve derivatives normal and tangent to dP of at
most order 2p — 1. In general, the boundary operator coeffi-
cients vary along dP. All operators are independent of \.
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The eigenvalue problem for vibration of a circular plate with
zero transverse displacement and a nonuniform, elastic, rota-
tional stiffness along the outer boundary is described by (1).
With the dimensionless variables

s=8h r=Rla N = (pha*/D)&* K= (a’'lD)K

where § is the transverse displacement, 4 the thickness, a the
outer radius, D the flexural rigidity, p the volume density, K
the rotational stiffness per unit length, v the Poisson’s ratio,
and & the natural frequency, and assuming K (8) = K, + ek(8),
the eigenvalue problem is

Vs ~Xs=0 P:0=r<l, 0=6<27

1
s=0 Vi -

— (s., + S""*) + Kos,, + ck(B)s,, =0
e r

oP: r=11(2)

The circumferentially varying component of the boundary stiff-
ness, ek{8), is small relative to K,,. An approximate eigenvalue
problem of the form (1) in which C;, D;, E; are nontrivial
operators can also result from perturbations of the domain
boundaries from circular (Parker and Mote, 1996).

The eigensolutions are represented in asymptotic series in ¢

(3)
(4)

Substitution of (3), (4) into (1) and collection of like powers
of € generates a sequence of boundary value problems on P and
aP:

x::"l’ == A'Jll"!ill + G”ﬂ“l + czn”f" + E:‘K!H" + O{Gd)

= = 2 3 4
Sy = Uy + Ep T € Wy + E1Zrmr + 0(6 )-

€": Lty — Nywthys = 0 Bjttyy = 0 (5)
€'s Luyy — AbUun = Mt Bivuw = —Cittyy,  (6)
€1 LWun = NonWon = Lomn + Mol
Biwy = —Cpupy — Dty (7)
€% Lzun — NonZom = HWiin + T + Kbt
Bizyw = —CiWin — Dy — Ejthy,. (8)

The self-adjoint eigenvalue problem (1) ensures orthogonality
of the eigenfunctions s,,, in the inner product (f, g) = [ [ fgdA.
Furthermore, the unperturbed (€°) problem is specified as self-
adjoint. With orthonormal u,,, substitution of (4) into the nor-
malization (S, S.a.) = 1 gives

9)

|
(umn- Umu) =0 (“m:n wmn) = _'i<vnmv uw:)-

The boundary conjunct J(f, g) of L (Roach, 1982), required
in the sequel, is defined by

J(f, g) has the form of a boundary integral.

(10)

Solution of Perturbation Equations

The eigenvalue problem (5) yields an infinite set of unper-
turbed eigensolutions, which are assumed known. Subsequent
solution of the perturbation problems (6)-(8) depends on the
degeneracy of the unperturbed eigensolutions. Distinct and de-
generate eigensolutions are addressed separately.

Distinct Eigensolution Perturbation. Consider perturba-
tion of a distinct unperturbed eigenvalue A}, with eigenfunction
Upo satisfying (5). (Though standard only for circular domains,
we adopt the convention that subscripts m0 and mn refer to
distinct and degenerate eigensolutions, respectively.) The ho-
mogeneous form of (6) has a nontrivial solution, u,,. The inner
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product of (6a) with u,,, and use of (9a) and (10) yields the
solvability condition

(11)

This necessary condition for solvability is sufficient if L has
closed range (Stakgold, 1979), The second and third-order ei-
genvalue perturbations 7,,, and «,,, are derived formally from
similar solvability conditions for (7) and (8)

Huwo = '_J( Hios UMD)'

nmﬂ = _J(um(h wml’.!)

Kmp = _J(umﬂa Zmﬂ) - P"mﬂ(uml]v wml)}- (12)

Equation (11) can be evaluated without the solution for v,
because only boundary values of v, are necessary. They are
defined by the boundary conditions (6b). The higher order
perturbations (12) cannot be evaluated until the preceding order
eigenfunction is determined.

The common practice for solving (6) expands v, in an infi-
nite series of the unperturbed eigenfunctions u,, (Courant and
Hilbert, 1989; Morse and Feshbach, 1953; Nayfeh et al., 1976;
Pierre, 1987). Though sufficient for many purposes, this solu-
tion form has several limitations. Convergence of the solution
is a potentially serious limitation that can arise when extending
the solution to second order. For instance, when analyzing plate
vibration on almost circular domains, a series for v, in the w,,,
leads to a divergent series when (12a) is evaluated (Parker
and Mote, 1996). Similar convergence difficulties occur when
perturbing the boundary shape of the Helmholtz equation with
either Dirichlet or Neumann boundary conditions (Morse and
Feshbach, 1953). Series representations are also cumbersome
when the eigenfunctions are required for response calculations
or system identification. Additionally, as e increases, higher
order perturbations are necessary, and the series solutions are
laborious to manipulate and program. Finally, eigenfunction
expansions require many unperturbed eigensolutions, particu-
larly if the series converges slowly.

Exact solutions of the perturbation problems (6) and (7)
avoid the above difficulties, The eigenfunction perturbations v,,q
and w,, are decomposed as

- .~ i
Uno = Coltmo + Vmo + Vo
(13)

The first terms are the nontrivial solutions to the homogeneous
forms of (6) and (7); c¢.o and d,., are determined from the
normalization conditions (9),

_ P
Wuo = dml)“ml) + W.;:u + Wﬂlo-

i h
Cwn = —<um0! U!:IU + u{:ﬂ])

dmﬂ = —<u..,n, wf::fl + W&B) - (ll2)<v:n0- Uml))- (14)

The terms vl and w’, of (13) are the general solutions to the
homogeneous forms of the field equations (6a) and (7a). They
are known since (5) is solvable. The key to the decompositions
(13) is the determination of v, and wh,q, the particular solutions
of (6a) and (7a). (These are presented below for plate vibration
and the Helmholtz equation on annuli.) With v}, and wh,
known, the undetermined coefficients in v%o and wh, follow
readily. Determination of v, and w,, permits evaluation of
(12). For specific problems, eigenfunction orthogonality re-
duces 71,0 and «,,o to compact expressions in the Fourier coeffi-
cients of the asymmetric perturbation. An example is presented
later for nonuniformly restrained circular plates.

Particular solutions v%, and w’,, are derived for annular
plates, where L = V* and the domainis y < r < 1,0 =60 =
27. The orthonormal unperturbed eigenfunctions are

Uppy = J(:!rﬂjﬂ( hrNi.'l"') + gmU l|’I}( h'mllr)
* lhm(JYCI(hnlll.’l'r) + EmUKO(RmOr}
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urlnle = [fmn-fn(hmr) + gmnlrr(hmur} + hmnYn(hmr)
cos nf
sin né

n=1 (15)

+ im..K..(hm..r)l{

where m and » indicate the number of nodal circles and nodal
diameters, respectively, of the eigenfunction. For n = 0, the
eigenvalues \,, are distinct; for n > 0, A, is degenerate with
uy? as corresponding independent eigenfunctions. The Bessel
function coefficients are chosen to satisfy the boundary condi-
tions in (5). (See McLachlan (1955) for a comprehensive list
of Bessel function identities.) Equations (15) and (6a) lead to
the particular and homogeneous solutions

= Hmol

4Noo

[fnod1(Mmor) = &modi (No?)

Y
UVimg =

+ huoY 1 (Anor) + imoKi(Amor)]  (16)
Umo = 2 [Pj(Nnor) + QLi(Nor) + BiYi(Aor)

j=0

+ QK (\or)] cos j8 + X, [RiJj(Naor) + ST Aor)

=1
+ RY(Muor) + S;K;(\or)] sin jO. (17)

The coefficients in (17) are derived from the boundary condi-
tions in (6),

Bulo= —Cityo — Bl r=19,1; j=1,2. (18)

If the variable coefficients in C; are represented by their Fourier
series, the constants in (17) are obtained by equating coefficients
of trigonometric terms on both sides of (18). Thus, perturbations
of the boundary conditions having general circumferential depen-
dence can be treated. The particular solution of (7a) is

P _ Humo?" | Hmol (N
Wino 4}\,3”0 8}\,3"0 lfmo 0( ml}r)

= 8molo(Nmor) + BuoYo(Nmor) — fmoKo(Nmor) ]

+ (Cmq + M
Hmo

- ;’—&)[fm.mm

= Emoli (Mnot) + oY1 (No?) + 1ok (Nor) ]

+ Z [Pj-ﬂa-l(}\mor) e Qj!j.—l(}\ml}r)

j=0

+ p_ijH()\,,,QI‘) + QJKJH(’\MQI‘)] cos ji

ik E [R_f-"jn(?\mt}r) = 8il 1 (Wo?) + Rj}}ﬂ(?\mni")

J=1

+ SiKjs1 (Amor)] sinje} . (19)

The homogeneous solution w'g has the form (17). The con-
stants in w!,, are determined following the process for v,.

Exact solutions of the perturbation equations are also ob-
tained for the operator L = —V? on annular domains. The
perturbed problem analogous to (1) is

Vi —a@%s=0 y<r<l

Bis+eCis +€’Dis+ 2Es =0 r=1v,1. (20)

With the eigenvalue expansion @2, = w2, + €/ + €pm +
€’kny + O(€*) and the expansion (4), the results (11)-(14)
apply. The perturbation problems (5)-(8) are obtained by let-
ting L = —V? and N}, = w2,. The results corresponding to
(15)-(19) are
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o :f;uOJO{wmur) T hmDYD(MmI}r} (21)
cos nf
u"’;i - [fmﬂjﬂ(wfﬂﬂr) + hmlIY”(w?”"r)] . n E 1
sin nf
Vho = — Lmol [frod\ (Wamor) + BnoYy (winor) ] (22)

W

U::il) = z [Pj-‘{j(wmﬂr} T p_,'Yj(‘-‘)mDr)] cos jg

j=0

+ X [RJj(wnor) + Ri¥(wyor)] sin jO (23)

j=1

w.:lﬂ LS _2“‘_;.}'{1_: {:::Z: [meJﬂ(mer) + hmﬂyﬂ(wmﬂr)]

- ( I L ;;—;‘) [ oot (Wano?) + oY1 (Wit

) m

+ ¥ [Pidy o1 (whor) + ﬁj}’}.q(wmor)] cos jé

j=0

+ 2[Ry (wwor) + Ry (wyor)] sin j9} (24)
J=1
where the coefficients are different than those in (15)-(19)
despite the identical notation. Thus, as for annular plates, eigen-
solution expansions can be determined exactly through third
order in € for the eigenvalues @2, and second order in ¢ for the
eigenfunctions s,,.

Degenerate Eigensolution Perturbation. Consider a de-
generate unperturbed eigenvalue A}, of multiplicity two with
associated orthonormal eigenfunctions u.}, and u2,

(“E}m! u:’fi") = 6(1‘ (25)
Asymmetries may split some repeated eigenvalues into two
distinct ones, while others remain repeated ( Tobias and Arnold,
1957; Yu and Mote, 1987). When asymmetry splits a repeated
eigenvalue, the associated eigenfunctions, which in the unper-
turbed system lie arbitrarily in a two dimensional linear space
spanned by u,, and u2,, become fixed in that space.

Eigensolution splitting can substantially alter dynamic re-
sponse. Yu and Mote (1987) show that radial slots in rotating,
circular plates split some degenerate eigensolutions. The split
eigensolutions are subject to parametric instability below the
critical speed. Tseng and Wickert (1994a) show that apparently
slight boundary asymmetry in circular plate vibration can gener-
ate a beating response not present in the axisymmetric plate.
The beating results from the participation of two closely spaced,
split eigensolutions in the response. Previous works emphasize
discrete asymmetries (Tobias and Arnold, 1957; Yu and Mote,
1987; Shen and Mote, 1993; Tseng and Wickert, 1994b). In this
study, the boundary asymmetries are distributed and possibly
discontinuous. Discrete asymmetries can be handled by the
methods herein as a special case.

To ensure that the eigenfunctions s,,,(x, y; €) vary continu-
ously with perturbation amplitude ¢, the -eigenfunctions
achieved in the limit of s, as e = 0 are sought as the appropriate
Uy in the expansion (4). Two such unperturbed eigenfunctions
must be determined, one for each of the degenerate unperturbed
eigensolutions. These u,,, lie in the linear space spanned by
un, and u?, and are not known a priori. We take the linear

combination
Ui = Qunlhpn + Aoyl (26)

and substitute this for u,, in (4) and (6)-(8). al, and a2,
define the eigenfunctions u,, from which the smooth s,,, loci
originate; they are to be determined for each split eigensolution,
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Solutions of the homogeneous form of (6) lie in the two-
dimensional linear space spanned by u),, and u%,,. Two solvabil-
ity conditions are found from the inner products of (6a) with
ul, and 42, and use of (10), (5a), and (25)

(27a)
(27h)

Expansion of (27a, b) generates an algebraic eigenvalue prob-
lem for fy, and a,, = (@y,az.)"

1 = 1
_J(“mrn Unm) = QpnHmn

2 2
“J(umnv Upm!) - aim.umu-

Da, = foun- (28)

D is symmetric because (1) is self-adjoint (Appendix A). The
two real eigenvalues p);2 are the first-order eigenvalue perturba-
tions of the split eigensolutions, The unit eigenvectors a ;> define
the two unperturbed eigenfunctions (26). Symmetry of D im-
plies orthogonality of a,;> which, along with (25) and (26),
guarantees that the unperturbed eigenfunctions associated with
the split eigensolutions are orthogonal.

If the eigenvalues of D are repeated, the eigensolution does
not split at this order of perturbation. The eigenvectors a2 of
D are arbitrary unit vectors, and the indeterminacy of the unper-
turbed eigenfunctions (26) is not removed at this order. If D
has distinct eigenvalues, the eigensolution splits, and the two
unperturbed eigenfunctions are given by (26) and a ;2.

The first-order eigenfunction perturbation v,,, is governed by
(6) and (26). (Though there are two split eigensolutions, the
NOtAtion [y, @, G2y, Ve TEPresents a generic case.) The de-
composition of v, is

1 1 2 2 !
Ui = ConUmn t Comlbmn + vur'm + U{:ﬂll' (29)

The first two terms span the linear space of solutions to the
homogeneous form of (6). The particular solution v}, is again
the critical term. For plate vibration and the Helmholtz equation
on annular domains, v}, is given at the close of this section.
With v%,, known, the undetermined coefficients in v%, follow
easily as for distinct unperturbed eigenvalues. The normaliza-
tion (9a) gives

1 1 2 2 1 1 2 2 h » 3
AunCmn T Ay Ciun = _<amnumw + Qo lbins Vo + vmn)- (30)

Necessary additional equations to determine cl, and c2, are
found at the next order of perturbation from the two solvability
conditions for (7). Analogous to (27), these are

,LLNIF!CJ'IHII + ”"’Iﬂll(ullﬂﬂi Uﬁ:ﬂ + vgﬂ") + a""ﬂnﬂ"

= —J{RII;}RI wﬂl’ﬂ) (3]'a)

2 2 h 2
p’MiI(‘*NN + #ﬂm(umn} Vinn + Ufm’:) T amnﬂmn

(31b)

— _J(usms wrmr)-

Equations (30) and (31) are solved simultaneously for el
c,, and 7,,,. Terms of J(u\2, w,,) that depend on c;, and

¢, must first be separated (Appendix B)
J(ulm» wnm) = "_Dllc:rm - Dlchml + j(“l‘ma wmu) (32(1)

J(“%ﬂn; Wum) = _Dl‘zcrlrm - -D?.Icrzml + ‘}(Hiﬂl! wnm) (32b)

where Dj; are components of D and J(uhz, Wa) = J(uni,

W) et2=0. The matrix form of (30) and (31) is

Hopn — DII _DIZ allnrn crim
'_DIZ Howm — D22 arzmx anrm
a.-lmi alz!m 0 Tinn

_“mn<“1!rm9 Uﬁm il U':m) = ‘Z(“ilml! wmll)

_ﬂmn{“%:n U’;ur i Uﬁm) 2_ J(Zusm vhwnm) } (33}
_aa!m(u:luna Vin + U{;m) - anm(umm Upmn + Uﬁm>

Eigenfunction orthogonality frequently simplifies the integrals
in (33) to closed-form expressions. If the eigenvalues p,; of D
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are distinct, the operator in (33) is invertible, and ¢, ci,,
and 7,, are the solution of (33). This completes the solution
for v,, and gives the second order eigenvalue perturbation 7,,,
simultaneously.

When D has repeated eigenvalues, the operator in (33) is
singular. Furthermore, a,, and a?, are not yet determined. The
first two equations in (33) reduce to

a.'.m'f?mu = _.umn(“:lnm Ui:m + uﬁm) = j(“nlmls Wr!rn) (343)

a:znnnnm il _)u‘mw(ui\n! U::m o u":m) - j{“iﬂlv wnm)- (34b)

If the eigensolutions split in a second-order perturbation, equa-
tions (34) and (a,,)* + (aZ,)* = 1 have two independent
solutions for 7,,,, @}, and aZ,. These solutions fix the unper-
turbed eigenfunctions (26) and determine the split second-order
eigenvalue perturbations. If the eigensolutions do not split at
second order, (34a, b) are satisfied for any unit vector a,,. In
this case, the eigenvalues remain degenerate through second
order in €, and the unperturbed eigenfunctions (26) are still
indeterminate. The degenerate second-order eigenvalue pertur-
bation is calculable, however. For the perturbation considered
by Parker and Mote (1996), the condition that (344, b) have
no unique solution for the unit vector a,,, is exactly the condition
that 7,,, be independent of a,,. 7., can then be evaluated at
this order perturbation. a,,, may be calculated with k,,, at third
order perturbation by a procedure similar to that described in
this section.

For the annular plate, a particular solution satisfying (6a),
(26), and (15b) is

”f”r
U'::m = %_3_ [fl:!mJn+I (knmrJ - gmrr[u+| (hmnr)

+ kﬂin)’llfl(xmﬁr) + f,,.,,K_.,“(hm,,r)]

X (al, cos nf + a2, sin n@). (35)

The homogeneous solution v, has the form (17). Fourier
expansion of the inhomogeneous boundary conditions (6b)
allows closed-formed solution for the constants in v*,. The
analogous result for the Laplacian operator in (20) is

Uﬂu = M [fan!!+l(Mnr) + kmn}(ui—l(hmnr)]

it

X (@b, cos n@ + a2, sin n8). (36)
Example: Nonuniformly Restrained Circular Plate

Consider the solid, circular plate described by (2) with its
rim constrained by a linear rotational spring of stiffness K(#).
The only nontrivial boundary operators of (1) are B,, B,, and
Cy = k(0)(*)u] =1

The boundary conjunct of L = V* (Meirovich, 1967) is ma-
nipulated into the form (Al), where

Biu = Bju = ul,=
1 s
BT“ = [__(v?u)" + Ty (“_.:9‘9 - “\rﬂﬁ):l

th‘. = l:‘|r|1"=1

Biu = Bzu

= [Vzu— L

—= (u,, + “—"") + Kou.,] . (37
r r o

The variable component of the rotational stiffness has the Fou-
rier representation
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= Y. k{ cos j# + Y, ki sin j#.

j=1 j=1

The unperturbed eigensolutions are given by (15), where A,
is the (m + 1)th positive root of

_I(l -V = KD)[Jﬂ(x)IuH(x) + JnH(x)!n(x}]
+ 2x3 (), (x) = 0,

k() (38)

(39)
The constants in (15) are

[27Z03(Ano)] ™ n =0

) {['frZ,,...Jf.m(?\m)]"” n>0

{—[zfrzmulﬁ(xmm-‘” n=0
Bmn =

_[ﬂzmn[i(}\mn)]_”z n>0
hmn = s.nm =0
Z o—q__2mt2 2,
l-v-K (-v-K)?

Distinct Eigensolutions. The distinct eigenvalue perturba-
tions reduce from (11), (12), (A1), (37), and (5b)-(8b)

Hmo = (umﬂir|r=l)2J: k(@)dﬂ = 0 (40)

2 2 142
Mmoo = {uanb,r!r-ﬁl)f (Umu:r|r=l)k(9)dﬂ = _( )
0 .

i)

X —"‘u___f {uluﬂ rlr= IJk(B)dB (41)

1l —-—v -
29 2 152
Kmo = (“mﬂ-r|r=l)f (Wmo,r|r=|)k(8)d9 = _( )
1] ?[‘ng
()
— =) k(8)d 42
1_U_an W= )K(B)dB.  (42)
The solution for v,,, bounded at » = 0 and evaluation of (41)
give
2 142 h.:
Upo = — 20
(?szo) 1l —v—-K
X i Ij(kmo)‘,j(hmor) — -{g(hmo)lj(hml}r}
- &
X (k§ cos j@ + kj sin j@)
2\
7;lmll:l = -

Z,o(l — v = Kp)?

% E JiCAn0) i1 (Ano) + L(Mmo) i1 (Mo)
- &

j=1

X [(k§)* + (k))*]

where {; has the functional form of the characteristic Eq. (39)
& = =Mool = v = Ko) [Jj(Nmo) Fy+1(Aumo)

+ Lt o) I(Nao) 1+ 2N5001(Nm0) (Ao -

The particular solution wi,, in (19) reduces substantially be-
cause i, = 0. To simplify notation in the solution for w,,
(43) gives

(43)
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Unmoor = Z Ty(k§ cos j@ + kj sin j6)

2 112 h
TJ-I_ - __( ml)
o |l -v—-K,

X Jj(hmD)IJ’*l(hnlﬂ) + "j(hmo)']j-*—l(xmu)
4 '

The boundary conditions (7b) and solution for w, are

whor=1=—whor=1= L
? ¢ (87Z0)"2(1 — v — Ko)No
BZW::O = _szml} = BZW:ID r=1

Who = X, [PiJ;(Amor) + Oi1i(Myor)] cos jié

j=0
-+ Z [ﬁj.}j{ Nuol) + 53—1,( Mot )] sin jé
i=1
nmﬂ .
bo= (87Zumo) (1 — v = Ko)NaoJo(Amo) 0 =0
P, 1 [ L) e e
{Gj} ZCJ { J(h-mu} }( z Ti(k_; Jk kj -Jkl}

+ Z Ty (kizgks + ki ki) + X T (kfuiks + ki ikD))

=ik
i=j+1 i=1

[Ej}zL{ [0\no)
51 2%

Ji(Nao)
+ X Ti(—kiki + ki ki) + X T, (kj..k§ —

=i+l i=1

} 2 Ti (kj-cks5 + k§_ik})

kiviki)}.

Equation (14b) completes the solution for w,,. Expansion of
(42) yields

2 \ 12
Kmo = _(z_mﬂ)

e dJ}(AmDr) dl,-( h-m(l‘ip) .
X E (i k¢
e [( dr odr g

Am!:l
1l —v-— Ko

N (E dlner) _dlj(x,m) k;].
d'r r=1

Notice that d,, is not needed to extend the solution to third
order in the eigenvalue. The results of this section apply for all
m nodal circle, 0 nodal diameter unperturbed eigensolutions
for a general Fourier stiffness representation. As K, —= =, all
perturbation terms approach 0 independent of k(8), and the
clamped plate eigensolutions are obtained. Similarly, if K, =
k(@) = 0, the perturbation terms vanish and we recover the
simply supported plate eigensolutions.

To compare with Leissa et al. (1979), consider the case K(6)
=1 + € cos 6 and choose v = }. Thus, K, = k§ = 1 and all
other Fourier coefficients in (38) vanish. The above equations
reduce to

2 142
Upo =
» ( Wzmo)

% ﬁ ‘(I(AMO)JI(-MO")C_ i (Mmo) Iy (Nnor) G5 @
v 1
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2N i Ano) o (Awo) + i (Ano)Ja(Ao)
ZMOUZ CI

Mmoo = — Koo = 0.
The findings 0 = k.o = 0 confirm the expectation, based on
symmetry, that the eigenvalues are even in e. The loci for the
first three distinct eigenvalues are

Nd = 36.23 — 1.393¢2 + O(e")
Mo = 9433 — 2.902¢? + O(e)
Niy = 5645. — 4.461¢2 + O(e*).

They are monotonically decreasing functions of €. For € = 0,
the first three exact, axisymmetric eigenvalues of a plate sup-
ported by a uniform spring are recovered. Table | compares
these results to the Ritz analysis of Leissa et al. (1979), where
only values for the fundamental eigenvalue are presented. Over
a large range in e, the differences are less than 1 percent. The
Ritz predictions bound the true eigenvalues from above and
always exceed the perturbation solutions.

Degenerate Eigensolutions. Consider perturbation from a
degenerate eigensolution with unperturbed eigenvalue A,,,. The
components of D in (28) reduce from (27), (Al), and (37)

2
D; = f Biu',, Coutfds = f Win s Uitk (0) O
r=|

a

b 2 K, K
Zmu(l o= &S KU}Z k;n _-kczr!

2 K:"ﬂﬂ

m [(k$.)? + (Kk3.)*1"2.
n - - 0

g = =
D has repeated eigenvalues if and only if &5, = k3, = 0. Other-
wise, the eigenvalues of D are distinct and the eigensolutions
split. Thus, to first order in ¢, splitting of the eigensolutions is
determined by the following rule: If the Fourier series for k()
has nonzero coefficients for either or both of cos 2n8 and sin
2n#, then the n nodal diameter eigensolutions split; otherwise
they do not. This rule addresses distributed, possibly discontinu-
ous, asymmetric boundary stiffness. Because splitting of the n
nodal diameter eigensolutions depends solely on the 2n compo-
nents of the Fourier series for k(#), the odd components of the
Fourier representation of stiffness do not influence splitting in
first order perturbation. Additionally, the number of nodal cir-
cles m does not influence splitting. Rules for other boundary
asymmetries are similarly obtained.

Discussion

A key feature of the method is that if particular solutions to
the inhomogeneous Egs. (6a) and (7a) can be found, exact
perturbation solutions follow readily for any boundary operators
B;, C;, D;, E, rendering (1) self-adjoint. Because the perturba-

Table 1 Comparison of third-order perturbation and Ritz
(Leissa et al., 1979) solutions for the fundamental eigenvalue
of a circular plate with zero transverse displacement and a
rotational spring of stiffness K(8) = 1 + € cos @ along the
outer boundary. A superscript * indicates the exact value.

Mo
€ Perturbation Ritz Percent difference
0 6.019* 6.04 -0.3
0.5 5.990 6.02 --0.5
0.6 5977 6.01 -0.5
0.7 5.962 6.00 —0.6
0.8 5.944 5.99 -0.8
0.9 5.924 597 -0.8

Journal of Applied Mechanics

tion terms of (1) are only present in the boundary conditions,
they do not introduce inhomogeneities into the field Eqgs. (6a)
and (7a). The inhomogeneity of the field Eq. (6a) is propor-
tional to the unperturbed eigenfunction u,,,. The functional form
of u,, depends on the operator L and domain P but is indepen-
dent of the boundary conditions, which only fix constant coeffi-
cients. Consequently, the functional form of a calculated partic-
ular solution v%,, does not change for differing boundary condi-
tions; only the constant coefficients of v/, change. Because
v’ is the essential component of the exact solution, exact solu-
tions are available for any boundary conditions once the func-
tional form of vf, is determined. Similarly, the functional forms
of the inhomogeneities u,,, and v,,, in (7a) are also independent
of the boundary conditions, so exact solutions of (7) are avail-
able for any combination of unperturbed and perturbed bound-
ary conditions once the functional form of the particular solu-
tion w,, is calculated. Thus, the particular solutions (16), (19),
(22), (24), (35), and (36) derived for the biharmonic and
Laplacian operators on annular domains allow exact calculation
of eigensolution perturbations for all such problems with bound-
ary conditions of the form (15), including those mentioned in
the Introduction. Derivation of particular solutions for rectangu-
lar domains should not pose significant difficulty, and many
other operators, such as that occurring in vibration of plates with
in-plane stress (Parker and Mote, 1991), can also be handled in
this way. The eigenvalue perturbation expressions (11), (12),
(28), and (33) apply for any operator L and domain P,

Boundary condition perturbation has features which make it
an attractive alternative to finite element, Ritz, Galerkin, and
other discretization methods. The perturbation does not rely on
trial functions to estimate the eigenfunctions. This makes it
particularly appropriate for analysis of higher eigensolutions for
which the selection of trial functions is more difficult; the exact
perturbation solutions apply for all eigensolutions. Boundary
condition perturbation gencrates analytical expressions for the
evolution of the eigensolutions from the normally well-under-
stood unperturbed problem, thus explicitly identifying depen-
dence on system parameters. Also, though discretized systems
predict eigenvalue splitting, rules can not be stated in general
terms; they must be inferred from numerical results. In contrast
to perturbation analyses that expand higher order eigensolutions
in series of the unperturbed eigenfunctions, the results presented
here have the aesthetic and practical advantage of requiring the
unperturbed eigensolutions for only those eigensolutions for
which perturbations are sought.

Pierre (1988) determined that, for distinct eigenvalues of
self-adjoint problems, first-order perturbation analysis and Ray-
leigh quotient analysis yield identical eigenvalue predictions
provided the unperturbed eigenfunctions are chosen as the ad-
missible functions for the Rayleigh quotient. Thus, second and
third-order perturbations are expected to yield superior eigen-
value predictions compared to those obtained from the Rayleigh
quotient using the unperturbed eigenfunctions.

Continuous system modal analysis for dynamic response is
easily carried out for the perturbed system since orthogonality
of the eigenfunctions s,, is ensured. Physical understanding of
the behavior, frequently lost through discretization, is thereby
retained. The method also provides a useful means to identify
boundary condition asymmetries using measured frequency
spectra. In the example, an unknown boundary stiffness can be
estimated by selecting a rotational stiffness Fourier series to
predict eigenvalues that fit the measured data. The explicit ex-
pressions for the dependence of the perturbed eigenvalues on
the stiffness simplify this iterative process. The physical system
may suggest an initial selection, e.g., six equally spaced bolts
in the plate inner boundary support suggests cos 66, sin 66
stiffness dependence might be expected. For design purposes,
the eigenvalue formulac can be used to favorably affect the
frequency spectrum by appropriate distribution of asymmetry.

MARCH 1896, Vol. 63 / 133

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Application of the method to particular problems is not diffi-
cult. For annular domain problems, Fourier series expansion of
asymmetries and orthogonality of the trigonometric functions
reduces the eigensolution perturbations to algebraic expressions.
Symbolic mathematics software facilitates this reduction. Since
the computations are exact, programming errors are avoided by
verifying each calculation by direct substitution. The algebraic
formulae are convenient to program when the eigensolutions
are to be used for response analyses, system identification, or
control.

Conclusions

(1) A boundary condition perturbation method is developed
for linear, self-adjoint eigenvalue problems where the perturba-
tion terms are restricted to the boundary conditions. Formal
expressions for the eigenvalue perturbations are derived through
third order in ¢ for distinct unperturbed eigensolutions and
through second order for degenerate eigensolutions. This ex-
tends the magnitude of perturbation that can be treated accu-
rately.

(2) For any boundary condition perturbation problem of
plate vibration or the Helmholtz equation on annular domains,
exact eigensolution perturbations are presented. The principal
benefits are

* no approximation is introduced beyond truncation of the
asymptotic series (3, 4);

¢ simpler forms of the exact solutions compared to tradi-
tional eigenfunction expansions allow higher order pertur-
bations to be treated with relative ease;

* convenient form of the eigensolutions simplifies their use
in modal analysis, system identification, design, and con-
trol applications;

® accuracy of the method is retained for all eigensolutions;
and

* results are easily derived and verified using symbolic
mathematics software.

Confinement of the perturbation terms to the boundary condi-
tions ensures that, if particular solutions can be found for other
operators and domains, exact solutions are readily obtained for
arbitrary perturbed boundary conditions.

(3) Splitting of degenerate unperturbed eigensolutions is
determined by the eigenvalues of a symmetric, algebraic eigen-
value problem. In contrast to previous works where splitting is
studied, distributed, discontinuous asymmetries are treated by
the method presented. Discrete asymmetries can be studied as
a special case. Both of the split eigensolutions are calculated.
For annular domains, Fourier series representation of the asym-
metric boundary perturbations leads to simple rules that deter-
mine splitting by inspection of the Fourier coefficients.

(4) Natural applications of the method are to vibration and
buckling problems, where many known unperturbed solutions
exist. Buckling solutions are particularly sensitive to asymme-
try. Geometric asymmetries such as noncircular boundaries
(e.g., elliptical domains) or slightly skew rectangles can be cast
as approximate eigenvalue problems of the form (1) and the
presented results apply (Parker and Mote, 1996). Asymmetric
boundary stiffness variations and partial boundary supports are
readily handled for these regions.
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APPENDIX A
Symmetry of D in (28)
The boundary conjunct defined in (10) takes the form of an

integral over the boundary dP. Assuming a fourth-order opera-
tor L, it can be expressed in the form (Stakgold, 1979)

J(u, v)

= f [BfuBiv + BSuB%v — BivBu — BSvBjulds (Al)
ar

B, are boundary operators for the geometric boundary condi-
tions and B, are the corresponding natural boundary condi-
tions. _

For concreteness, J(ul?, v,,) in (27) are evaluated for the
case where B, and B, in (5b) are natural boundary operators,
B, = Bf and B, = Bj. Thus, using (5b), (6b), and (26),

2
Ty = Bitya = 0
" s e 1 1 2 2
Blumn = _Clﬁmu = _amnclumu - amnclumn
A 12 I 1 2 2
Bgvmn = —Czuum = _arrmC?.“mn — Qun CZur!m-

Direct substitution into (A1) yields

~J(Upns Vma) = @ | [BYuhaCrtthy + BiubnCoul1ds
ar

+ aﬁ,..f [Biul,Culk, + Biul,Coul,]ds
ap

Dya). + Dpal, (A2a)

2 —_ 1 8 .2 I & .2 1 2
_J(uumn Unm) - amnf [Bm,,,,,Cm,,,,, + Bzumnczumn]ds
aP

2 &2 2 .2 2 198
+ f [BI“um Clumrr + Bz“m Czumnjds
aP

Di!laer + DZQQEWJ- (A2b)

Self-adjointness of the eigenvalue problem (1) requires that,
for any two eigenfunctions § and §,
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J(F5 5 =0= f [BisB§ + B3sB4§
ap

— BisB:5 — B3sBy51ds. (A3)

With B, = B} and B, = B} as above and with (4), (1b) gives

Bir= —eC\T + O(c?) Bir=Bim+ O(e)

Big = —eCit + O(e?) Bir=Big+ O(e) (A4)

with similar equations for §. Letting §= s,,, = 4}, + O(e) and

§ =52, = ul, + O(e), substitution of (A4) into (A3) yields
J(Spur Son) =0 = € LP [— B tpu Crttinn = Bithpn Cott

+ BiupCitegy + Bl Cotty)dS + O(€?)  (AS)

The condition (A5) for self-adjointness of the eigenvalue prob-
lem (1) requires that Dy, = D, in (A2), and D is symmetric.

APPENDIX B

1,2

Expansion of J(u5, W) in (32)

For the boundary conjunct in the form (Al), expansion of
J(un, W) for ul? satisfying the natural boundary conditions
Biul? = 0 and Bjul? = 0 yields

Journal of Applied Mechanics

i & i B A
J(H;,M, wmll) = f [Blu:am Twmn He BZ“:untwmn]dS
ar

i=1,72

Substitution of the boundary conditions (76) and use of the
decomposition (29) gives

i & i 1 3 2 .2
J(u:mn wmn) ‘"J. [Blu:mi Cl{cmn o + Conn Wi
ar
h B A
+ Uinn + U;n) + Blu:nnDlumu]ds
§ i 1 1 2 2
- f [Bzu:m:C?(cmuunm + Clnnbmn
ar
8

+ Uﬁm + Uﬁm) - Blu:\nnDzum!l]df

= “C,I,,"J. [Bfu:‘nuciu:]\nn &+ Bi“funczf":m:]df
ar

_crz;m f [Bfuf,..,C|M§.,, -+ Bgufﬂwci!uin]df
ar

< J(“Lni wmu}lc,lu':=ﬂ i = 19 2 (Blj

where the last term includes all terms independent of c);;. Com-
parison of (B1) with the definitions of D;; in (A2) yields (32).
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Asymptotic Theory of Broadband
Rotor Thrust, Part I:
Manipulations of Flow
Probabilities for a High

Number of Blades

Modern computer predictions of the frequency spectrum of net thrust for a rotor in
turbulent flow display a number of features that call for interpretation. The success
of the asymptotic development described here in providing the needed explanations
lies in the relative generality of the model. The rotor is fully three dimensional. It is
not a cutaway blade row. The theory’s only requirement is that the number of blades
be large (six is enough). The most practical aspect of the new work is that it supplies
a highly accurate analytical solution for the broadband '*haystacking’’ in a propulsor
of high solidity. An important intermediate result is that the probabilistic amplitude
of random gusts perceived by that propulsor climbs radially outwards along its
blades, solely by virtue of the three-dimensional kinematics of the rotor's aerodynamic
sampling of the turbulent flowfield: The behavior is v’ for the normal-to-rotor flow
statistics and t* for the cross correlation of normal and in-plane downwash compo-
nents. The final effect is a spanwise distribution of sectional loads that is highly
concentrated at the blade tips. The turbulence in the present study is homogeneous
and isotropic but its integral scale may take on essentially any value and the asymp-

R. Martinez

Cambridge Acoustical Associates, Inc.
200 Boston Avenue, Suite 2500,
Medford, MA 02155-4243

totic analysis still holds.

1 Introduction

This paper revisits the problem of predicting the frequency
spectrum of broadband thrust experienced by a rotor ingesting
homogeneous isotropic turbulence (Fig. 1). In Fig. 2, whose
solid curve displays the output of a hypothetical example of the
type treated exactly by Jiang et al. (1991), and independently
by the present author (1990), one notes

(1) a broad “‘haystack’® hump roughly over the blade-rate
frequency w = B}, with

(2) asmall but still discernible first harmonic hump at w/BS2
~ 2, and

(3) a slight right shift for the maximum response, which oc-
curs just above w/BS) = 1.

The figure actually depicts a mild example for each of the
three effects. It is nonetheless useful because it addresses a
turbulence-scale case for which a simpler theory can also justi-
fiably be brought to bear: Sevik’s pioneering treatment (1971)
of a rotor where by prescription a given turbulent “‘eddy’’ is
struck no more than once. His model yields the broken mono-
tonic curve and therefore fails to account for any of the three
features noted in the solid one.

The first paper relevant to the work presented here seems to
be Liepmann’s 1952 analysis of a single airfoil cutting through
a wave number spectrum of random isotropic downwash. Sev-

Contributed by the Applied Mechanics Division of THE AMERICAN SocCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
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ik’s later handling of the rotor problem differs in spirit from
this, as well as from almost everything else both before and
after 1971, in its attempt to keep the turbulence description in
its original spatial domain. To cite but a few studies (beside
Liepmann’s) that have taken the alternate spectral approach:
Mani (1971), for a two-dimensional cascade; Homicz and
George (1974), Breit and Dickinson (1990), and Brown
(1993), for a rotor; Blake (1984), for both cascades and rotors;
Ventres et al. (1982) and Glegg (1993), for blade/blade corre-
lated and uncorrelated flows, respectively, for a modern ducted
propulsor at high subsonic speeds.

The present paper shows that not only can Sevik's spatial
viewpoint be generalized readily to include the missing blade-
to-blade temporal changes in flow statistics, i.e., the causes of
the nonmonotonic haystack response, but that the resulting the-
ory lends itself uniquely to an asymptotic analysis based on a
single requirement: that the number of blades B in the rotor
be large. The ‘‘closed-form’” solution developed here for the
frequency spectrum of net rotor thrust is uniformly valid for all
frequencies 0 < w/B§) < <« for any one practical value of
the turbulence scale A/R,, and, conversely, for an essentially
unlimited range in A/R, at any one w/B(}. The new theory
explains simply which of, and how, the flow and aerodynamic
parameters affect all three of the features listed above for rigor-
ously computed frequency spectra of rotor thrust. This paper
addresses points 1 and 2 and defers 3 to a companion article.

The mathematical manipulations of the asymptotic theory
will appear here to rely heavily on an assumed exponential form
exp(—4g/A) for the fundamental correlation of in-line velocities
**f(g),”’ for the isotropic flow impinging the rotor. However,
yet another future paper will analytically continue the final re-
sults of this one to any form of f(g). In doing so it will not
only generalize faway from the exponential form, but will also
dispense altogether with the somewhat artificial concept of an
integral scale A in the context of rotor/turbulence interaction.
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2% (my-1) 2 M-
B

Fig. 1 NASA propfan normalized by its own radius R;: The eddy size of
the incident isotropic turbulence is A/R,. The blades are twisted, swept,
and of variable quarter chord b(r)/2R,. The sketch defines the dimen-
sionless coordinates r;, r. (without tildes), and 6,, 8,, of two general
blade stations where turbulence velocities and random sectional loads
are being correlated. Variable z runs along the fan’s axis, The in-plane
angle 0, has suppressed the convective effect of the turning speed 2 to
make for a simpler picture. Variable g has similarly ignored the time-
dependent axial distance Uz/R,.

The new approximate analysis joins a growing class of math-
ematical treatments that make the same high- B assumption; see,
for example, the acoustic theories by Crighton and Parry
(1991), Peake and Crighton (1991), and Envia (1992). But in
the tonal problem of those studies there is a single, definite
relation connecting the high order vB of all the usual Bessel
functions to their high-frequency argument vBSl*const. The
work described here, on the other hand, will be a high- B theory
without restrictions regarding frequency range, essentially be-
cause in a nondeterministic problem a rotor’s frequencies and
circumferential modes exist independently of each other.

2 Summary of the Exact Fully Correlated Theory as
the Launching Point for the New Work

Following Sevik (1971), T?(w) will be the frequency trans-
form of the rotor’s temporally correlated thrust 7 >(7), whose
square power will therefore be strictly symbolic:

(1) = f dw cos wrT?(w);
V]

*dr

THw) = P e T*(7). (la, b)

—oc

One defines the normalized thrust spectrum T?(w) related to
T*(w) by

T2 (w) 4nB? <A
T (w) = = 2\F,
@) = R Uy T \R

(2)

where our new function F turns out to depend on eight nondi-
mensional parameters:

B 2 8°(r) & & BQA A

r= wh
R, R R U R U’

The first five and part of the sixth fix the rotor geometrically.
The ratio /R, = b(r)/R, denotes the distribution of halfchords
along the span ‘‘r’’ of each blade normalized by R, (Fig. 1);
#°(r) is the distribution of mean blade sweep from root to tip.
The fourth parameter is the ratio of hub to tip radii. The fifth
is an artifact of strip hydrodynamics: it introduces the radius
R to be that spanwise station past which one could arbitrarily
cut off the integration of running loads to model *‘tip relief >’
crudely. A/R, is the integral scale of the homogeneous isotropic
turbulence normalized by the rotor’s tip radius.

Embedded in the sixth parameter is the rotor’s advance ratio
J,, since one may write it as

BOA - 7TB<%><A) = 7B (-1-\-> ;g = ﬂ (3a,b)
U wU / \ Rr J. \R, QR,

J, is thus not independent of the others in the above roster and
consequently does not show up in it. 2 and U are the rotor’s
turning and forward speeds, respectively. U normalizes the am-
plitude of the RMS turbulent fluctuations “‘x’’ in the denomina-
tor of the right-hand side of (2)’s first equality.

One finds after a fair amount of work that F may be put in
a form that describes how the three-dimensional flow correlation
tensors R%, R, and R are operated upon, in cylindrical
coordinates, by a corresponding set of double r,, integrals, a
pair of m,, summations over the B circumferential blade posi-
tions, and the 7 transform of (15). These operators will appear
here compactly designated by the letters £, Ly, Ls:

1010g,,|T? (w)]

T T ¥ T T

T
1.5 2 2.5 3
w/B0

Fig. 2 Sample numerical experiment for the exact theory (solid curve), and
for Sevik's model of effectively stationary blades: The exact calculation (“e”
subscript) displays a broad, 6 dB hump over the blade-rate frequency and a six
percent right shift for that maximum response.
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F = 7T {J‘,R[R”] + L4[R? + R*] + L4[R¥]}, (4a)

{LIR™] + L4[R? + R%]}. (4b)

Bzﬁﬂ

The second equality of (2) and (4b)’s first term together
establish what we later shall refer to as the normal-to-rotor
thrust correlation component [T%(w)]?, etc. Blade pitch, and
more generally, blade twist, is the cause of the three-element
form of (4@). The R**** nomenclature in (4b) has adapted
Hinze's equation (1-44) (1975); e.g., for R¥ his *‘i"’ = **j”
indices have both become equal to our z in Fig. 1, and his points
**A” and "*B’’ have become our general correlation points |
and 2. A rotor whose blade chords lie flat on their plane of
rotation would contain only the R¥ component because the w?
flow component would then only graze the blades’ surfaces.
Likewise, a rotor with similarly flat blades, but with chords
now feathered into the freestream U, would be subject only to
the flow’s circumferential autocorrelation R®. And while R*
might be expected to contribute significantly to the net torque
then, it would clearly have no impact on rotor thrust.

R* is given by

2
R“z:%(q—%) of +fi f=f(q)=e %M (5a,b)

Variable ¢ = §/R, is the normalized correlation distance be-
tween points 1 and 2:

g={ri+r3i—2rr,cos[0°(r) — 0°(r)

+ 2x(my — my)/B — Q7] + (Ur/R)*}'"2. (6)
Quantity &, in (5a) is the component of g normal to the rotor
disk: £, = Ur/R,, which embodies the frozenness hypothesis
along with 27, which appears in the angular argument of (6).
Our modeled turbulence will therefore not undergo the type of
distortion which Atassi and Grzedzinski (1989) analyze in their
treatment of deterministic flow structures approaching a body.

The first step needed here to cast the exact spatial-domain
theory in a form amenable to asymptotic analysis is to make
use of the identity

_ 2B 6

my=1 mz—l

X X Ku(yr)Ls(yr) cos [VB(6,(r) —

p=—r

0.(r2) }. (7)

The above holds for r, < r,; a similar expression applies for
r2 > ry. One therefore finds that the two parts of (45)’s right-
hand side are expressible as a series of circumferential modes
v, eg.,

Lo[R¥] = Z hi(y), (8a)

v —

Bsz

where it turns out that
R 2 R‘"IR, "
hi(y) = —41"(X’) f drig*(n) dr.g*(ry)
Ry/R, Ry/R,
X cos [a(r) — a(r;)] cos {vB[6°(r;) — 6°(r2)]}

1 2(vB)*?
x 43| rt 4 r2 4 2ZBY Ik v Latyr)
2 ¥
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1
+ nnKig(yr)s(yr) + ; [1KLa(yrode(yrs)

+ J’zKua(‘)'f'l)I.'»s(Wz)]] . (8b)

K,p and 1,5 are modified Bessel functions. The argument y of
h¥ is the dimensionless radial ‘‘wave number”’

G T ()

The function g*(r) in (8b) is the z component of the deter-
ministic aerodynamic transfer function for the blade section at
radial station r:

b(r)/R,

1+ A(r)i=?
5 wlJ(r)
VI + [27Tb(r)IAVNT + 7212 (r)

J(r) stands for J,/r, which determines the twist distribution
from root to tip by placing every blade section at zero angle of
attack relative to the total local freestream [U? + (QRr)?]"2,
with r dimensionless.

A related function g°(r) emerges in connection with the ‘z8”’
problem in the second term of (4b)’s right-hand side. We state
it now for purposes of comparison:

b(r)/R,

V1 + J2(r)/7?
g 1

VI + [27Tb () AV + 72072 (r)
The second multiplicative factor of g% in (10b), ie., 1/V...,
is the amplitude of a popular approximation of the Sears func-
tion (e.g., Goldstein, 1976) as the relevant transfer aerodynamic
function for aero/hydroacoustically compact blade chords.

Symbol a will denote the Sears phase for use in (8b) and others
that will follow:

Th(r) [ 1
ALV + 7212

(9)

gi(r) =

g'(r) = g*(r)- J(r)Im =

(10b)

a(r) =

T2A ]
% . (1)
2[AV] + n¥72(r) + 2aTh(r)]

The second term on (4b)’s right, which contains the effects
of normal/in-plane cross correlation of turbulence velocities, is
also expressible as a series of circumferential modes,

R\ BQA 1 (Rl
W (y) =42 (2 ~f
N 49(A)( U ) (Bn ) Vi dom
“(r2)g%(r2)

n J’ drz,[g § g‘(r.)g"(ru]
Ry /R, a2 "
X cos {vB[8°(ry) = 6*(r2)])} cos [a(r) — a(ry)]

2
X {l [r.’ +ri+ Z(V‘f)
2 Y

:’Kya(')”'l}lus(?‘rz)

1
+ nnKig(yr)s(yr) — ; [nKLs(yr) e (yr:)
i F'JK;B{')’?'I)[:«B(')’"Z)]} . (12)
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3 The New Asymptotic Analysis for ‘B > 1"’

One takes vy in the arguments yr,, yr; of the Bessel functions
K.p, Iy in (8b), (12) and writes it as y = vB(y/vB) at least
for v # 0. Le., from (9) one defines

s= o (2 _ YV (2AY -2(5)
”—us“\}(m ) (%) + eo(3
w % T A 7 2 R‘
[T o

and then expresses K,,(vByr), L.s(vByr,), etc., in terms of
their turning-point expansions (cf., for example, Abramowitz
and Stegun, 1968). After a great deal of mostly self-canceling
algebra, the r, integral in (8b) filters down to

_]" dr,gi(ry) cos [a(r) — a(r,)]

RyIR,

2
X cos {vB[0'(r) — 8*(r)]) {% [r:," +ri+ Z(Vf} ]
y

X Kop(yri)Lp(yr:) + rinKlg(yr)ia(yr:)

+ % (1K lp(yr)La(yr) + szvuu(')’f'l)ua('}"'z)]}

—2rigi(r)

N —2r}(vB)*g*(r)
wB)'L + (3r)°1°

“{wBy + ey 9

For reasons that are beyond the scope of the present paper, but
which appear documented in detail in Martinez (1993), this
result holds regardless of the value of A/R, so long as B > 1.
The size of the largest error in the overall expansion is 4/(vB)
(i.e., it is independent of A/R,). That maximum *‘global’’ error
occurs when A/R, is large rather than small. The magnitude of
the error decreases to O(vB) ~** when A/R, is small rather than
large. One similarly finds that the r, integral in (12) becomes

J"' - g (r)g"(r2)
Ry iR, ra
2(:;3)’]

X cos {vB[#°(r) — 6°(r2)1} L ri+ri+
2 '

cos [a(r) — a(r)]

X Kop(yri)Lg(yr) + f’lrzK:fn('le)Hl.-;(‘}"rz)}

1
= ;[-"uf(;n(’}”|)fun("}""z) + -"'sz('ﬁ’f'l)an(')‘rz)]}

L 2rid?ei(r)g’(n) _ 2riy’gi(n)g’(n)
(WB)'[1 + (3r)’) LB + (yr)’]*

The final equalities in (14a, &) have reabsorbed vB into the
original meaning of y: y = vB¥. These two expressions contain
the two main analytical results of the paper. They explain how
a B-bladed rotor perceives kinematically the field of homoge-
neous isotropic turbulence striking it. The result in ( 14a) states
that the sampled subfield of normal-to-rotor statistics ‘‘zz"' rises
from hub to tip as r{, for eddy integral scales in the *‘large™
range A/R, > 1/B and for frequencies in the neighborhood of
the blade rate or its harmonics. Under both of these conditions
the denominator in (14a)’s final right side becomes insensitive
to r, as y becomes much smaller than B (e.g., for v = 1),
which is to say that 4 becomes much smaller than 1. The
effective rectilinear ‘‘gust’’ amplitudes of the *‘zz’’ field thus

(14b)

Journal of Applied Mechanics

climb radially as r3'?, just by virtue of the acknowledgement

by the rotor of the three-dimensionality of the turbulence field,
i.e., by sampling it aerodynamically along a correct, divergent
set of loaded quarter-chord curves. This novel finding is obvi-
ously beyond the reach of any two-dimensional cascade analysis
such as Mani’s (1971), which focuses on a single slice around
the rotor taken at some favorite radial position of that same
three-dimensional field. Equation (14b) similarly deduces that
the rotor-sampled “*z6"" velocities coalesce at the rotor’s blade
tips at the even higher rate of r {, and that their effective rectilin-
ear gust amplitudes therefore do so as r3.

It is important to understand that these conclusions have noth-
ing to do with the additional radially dependent ‘‘kinematics’’
of the aerodynamic transfer functions g*(r) and g%r). The
next step is to bring them in. One defines for convenience a
new function G(r) to be

[b(r)/R]?

G ).k M
) = I Py
X 1 . (15)
| + [27Th(P/AINL + 7213 (r)
which incidentally is [g%(r,)]? from (10b). Then
. ,ﬁz ﬂ_zrz
(g*(r)]* = T G = 7‘ G(r).  (l16a)

The first equality of (16a) follows from (10a) and its second
equality from (18). The result in (10b) similarly leads to

g (r)g’(n) = 13’51 G(n). (16b)

Inserting these results into (8) and (12), and these in turn
into (18), etc., and finally into (4b) and (2), one obtains that

[T“"“’(w)]ﬁ ~ [T’-‘(w}]z + [T“”(w)lﬁ
_ 1477 (A\ B J'R“""'
2 (R;) [0+ T2 Jee, drG(r)

327 (R, e w
I (R [z

Rea X, r*G(r)
X dr ————, (17
fx,,,m, r[(UB)Z*' (yr)*1 i
with
X , 64r* (R,
[TH(w)]i = 7 (K)34
® w Rn[f'mr ?‘SG ( r}
o dr ——— 176
g ! ”(Bn ") f "“n+ e 7P

The “‘a’’ subscript in the left-hand sides of (17a, b) denotes
asymptotic. Three comments:

(1) The order of all Bessel functions in (8b) and (12)
became vB due to the double summation in m,, m,, each from
1 to B. That sum obviously removed all blade-to-blade differ-
ences in the circumferential position of the points being corre-
lated and left behind only the r,, r, independent variables. It
also left behind a single difference 8*(r;) — 0°(r2) due to the
relative sweep of the radial stations r; and r, for the rotor as a
whole. That difference in sweep positions has now dropped out
due to the high concentration at r, for all r, integrands. The
relative phase of the loading a(r,) — a(r,) among any two
blade sections has similarly disappeared. And even though that
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phase referred here only to the Sears function of strip aerody-
namics, which outright ignores sweep effects as a transfer func-
tion, one is led nevertheless to the conclusion that all spanwise
phase effects are globally irrelevant, at least for flows that are
isotropic or nearly so. Put another way: spanwise cancellation
effects due to sweep must be paradoxically local in a turbulence-
ingesting rotor. The almost perfect agreement observed among
rigorous computer runs with and without sweep for the points
being correlated, but using the Sears transfer function in both
cases, supports this expectation (this comment refers to compar-
ative runs by Jiang et al. (1991) using a very detailed represen-
tation for a test geometry, i.e., including #°(r), and by the
author, who applied the exact equations listed above with 8*(r)
set to zero. The two groups of runs agreed anyway).

(2) One of the analytical cancellation effects in (17a, b)
is a fast decline of rotor thrust with an increasing value of the
number of blades B, except for very low frequencies. The r
integrand becomes proportional to B~® for A/R, > 1/B, which
upon multiplication by B“—the constant outside the integral in
(17b)—yields B*. The obvious conclusion is that the more
blades the better, if one’s goal is to reduce T3(w) with all else
holding equal.

(3) One may interchange the v sum and the r integral and
evaluate the former analytically using standard complex-vari-
ables techniques. This has been done but the results are neither
insightful nor compact looking. They are not insightful because
the v sum in (17a, b) already converges very quickly (as 1/
v*), and thus hides no interesting secrets to be uncovered only
by the analytical process of closed-form summation.

A By-Products of the Asymptotic Theory. The denomi-
nator of the r integrand in (17b) supplies an analytical expres-
sion for how much the blade-rate and higher-harmonic humps
should protrude above their broadband ‘‘background.’’ That
amount is

oo (5]
R’ wiBR=p
2773
EREC)
R-f wiB =4 142
o [(2) + (BLAY](Be)
24, B R,
St R,/A)’(& s
B R,

il

(18)

{ 5 (_ﬂ_ (R V1
2vlJ, R,

The first approximate equality holds for BOA/U > 1; the sec-

ond, under the simultaneous conditions A/R, > 1/B and BQA/
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U > 1. One recalls that BQA/U is one of the original eight
parameters identified after (2). A small value for it causes the
numerator on the right side of (18)’s second equality to match
its denominator: there are no humps then. Homicz and George
(1974) originally isolated BSXA/U as the qualitative regulator
of hump size for a rotor’s acoustic signature. They deduced
BQA/U’s role from their version of (9) of this paper, and
apparently from the behavior of their numerical experiments
with respect to changes in this parameter. Thompson (1976)
has made a similar observation regarding just B: that higher
values for it should, and often do, bring sharper humps numeri-
cally. Blake (1984 ) states the BRQA/U > 1 criterion obliquely
but equivalently: since BQA/U = (wB/J,)(A/R,), the inequal-
ity BQA/U = 1 becomes A/R, = J,/wB, or, since J, is a measure
of the pitch at the tips (he implies), A/R, > *‘pitch”’/B.

Blake correctly reaches that important conclusion while re-
garding the haystacks as separate corrections to Sevik’s broad
monotonic base, though he (Blake) seems to overestimate the
magnitude of the overtone humps at w/BQ = 2, 3, .. .. Expres-
sion (18) now predicts analytically and quantitatively how those
haystacks should grow with increasing values of BQA/U as
part of a unified result that approaches Sevik’s monotonic re-
sponse under special conditions. Moreover, the approximate
equalities of (18) indicate for the first time that there is a limit
to the degree of tonality thereby achieved: a true tonal limit is
fundamentally unreachable for a fixed value of J,. This is espe-
cially true of the higher harmonics » > 1 and for decreasing
values of the tip relief parameter R./R,: either brings about a
flattening effect within the curly brackets of (18)'s final right
side. The expression produces an infinite ratio only for J, = 0,
i.e., for U — 0, when the rotor is made to churn the same
flow statistics over and over again. That limit is understandably
nonuniform: The tones are infinite in level but their coeffi-
cients are proportional to the vanishing freestream U raised to
a positive power.

Additional Remark: Sevik cites an experiment in his paper
that displays a large second hump at w/B€) = 2 that would
appear to contradict (18). However, the consensus of the mod-
ern computational community is that the highest levels in that
data are probably too high, and that the response measured near
w/BSY = 2 is especially suspect.

B Corroboration of the Asymptotic Theory. The dem-
onstration of the new asymptotic theory will proceed here as
follows: (a) It will first explain the haystack features of these
and other numerical experiments, i.e., it will show that the
magnitude of the hump sizes, etc., are in fact accounted for
parametrically by the spinoff asymptotic results of Section A,
and then (b) it will compare the exact calculations in Fig. 2,
and others, to new predictions by the asymptotic expressions
for thrust spectra in (17a, b).

(a) Interpretation of Numerical Experiments. All of the
calculations are for a rotor with blades of constant halfchord
ratio /R, = .1. The ratio of hub and tip radii R,/R, is .2. The
mean sweep 6°(r) is zero. The advance ratio J, is unity. R/
R, will also be unity for simplicity’s sake.

Figure 2 addresses a small turbulence scale case where A/R,
= 1. B = 6. The rigorously computed blade-rate hump rises
above its broadband base by roughly 6 dB and is hard to make
out for twice the blade rate. The asymptotic hump size from
(18)is 6.5 dB for » = 1 and 4 dB for v = 2. Figure 3 addresses
a large scale case (A/R, = 2) for 6 and 12-bladed rotors. The
level of the blade rate hump for B = 12 is 6 dB below that of
the B = 6 result [6 = 10 logis (Buew/Ba)® = 10 log,e 4] —
consistent with the earlier discussion. Equation (18) performs
similarly in its estimate of the size of the blade-rate hump: Its
prediction is now 16 dB for » = 1 and so in good agreement
with the figure’s 14 dB, both for B = 6 and for B = 12. Either
case is indeed more ‘‘tonal’’ than that of Fig. 2 because A/

Y
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Fig. 3 Comparison of exact and asymptotic total spectra for the very large eddy
case of A/R; = 2,for B = 6 and B = 12. R4 /R, = 1. The largest differences between
the exact and asymptotic curves are 2.5 dB for B = 6 and 1.5 dB for B = 12.
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Fig. 4 Comparison of the new asymptotic spectra [T2,]2, [T*",]2 to their exact
parents [T2,13, [T32113. B = 6, A/R, = 1, and R /R, = 1.

R, has increased, but by (18)’s second equality each is also
essentially at its tonal limit: For B = 6, BQA/U is already
““infinite”’ since BQA/U = (wB/J,)(A/R)) yields 127 ~ 38
for this J, = 1 rotor.

(b) Direct Checks of the Asymptotic Theory. Figure 4
plots the exact v = 1 component solutions from Fig. 2, where
A/R, was 15, and the closed-form asymptotic results of (174,
b). The agreement is good. Returning now to Fig. 3, where the
integral scale ratio A/R, had the opposite extreme value of 2
(i.e., an eddy the size of the rotor diameter), one notes again
good agreement. Exact and asymptotic results merge as they
should when the rotor’s number of blades B is doubled from 6
to 12. The indicated maximum gaps between the asymptotic
and the exact solutions follow the 4/(vB) maximum error of
the approximate expressions, as earlier discussed.

4 Conclusions

The paper’s main objective was to produce a new asymptotic
theory for the frequency spectrum of broadband thrust felt by
a rotor chopping isotropic turbulence. The new solution was
called upon to supply physical explanations for a number of
features apparent in formally computed spectra:

(1) The height of these ‘*humps’’ above their monotonic
background;

Journal of Applied Mechanics

(2) their relative size along the frequency abscissa, i.e., v
= 2 versus v = 1.

A new asymptotic theory now exists based only on the re-
quirement that the rotor’s number of blades B be large. The
analytical post-processing of its main solution (Egs. (17a, b))
has generated a set of spinoff expressions that explain both of
the above and others to be dealt with in future communications.
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Asymptotic Theory of Broadband
Rotor Thrust, Part ll: Analysis of
the Right Frequency Shift of the

R. Martinez

Cambridge Acoustical Associates, Inc.
200 Boston Avenug, Suite 2500,
Medford, MA 02155-4243

Maximum Response

One of the more intriguing features observed in rigorously computed frequency

spectra of the random thrust on a turbulence-ingesting rotor is a shift of the broad
peaks, or ‘haystacks,’’ to frequencies slightly higher than blade passage and harmon-
ics. This paper applies the final results of an earlier Part I article to uncover the
rotor and flow parameters responsible for that shift. The new work is analytical and
asymptotic rather than numerical. It relies on the sole requirement that the rotor
have a reasonably high number of blades. The theory shows that the statistical
mechanism that causes the shift is fundamentally antitonal, and that it therefore has
no corresponding counterpart in deterministic systems of blade/flow interaction.

1. Introduction

This is the second in a series of three papers that attempt to
explain analytically a number of features apparent in formal
numerical ‘‘experiments’’ of rotor/turbulence interaction; cf.,
for example, Jiang et al. (1991) and Martinez (1991), for sam-
ples of such rigorous calculations, and Fig. 1 here for a sketch
of the physical problem. Our focus this time will be the lean,
or outright shift, often displayed by the maximum broadband
response in the computed frequency spectrum of propulsor
thrust. Figure 2's solid curve shows a typical case where the
center of that broad peak occurs six percent above the rotot’s
blade-rate frequency.

The new development will demonstrate that the shift phenom-
enon is the simultaneous effect of (a) an interpretation of the
impinging turbulent field that is strictly faithful to the flow’s
probabilistic character, for isotropic turbulence at least, and (&)
of having a three-dimensional rotor as a *‘sampler’’ of the flow’s
statistics. The omission of either (a) or (&) from a theoretical
analysis would make the capture of the observed right shift
impossible.

The absence of (a), i.e., of a fully random flow model, enters
Sevik’s (1971) ground-breaking theory surreptitiously. The
tacit assumption is that an ‘‘eddy’’ is struck no more than once
during its crossing of the rotor disk: the rotor’s turning speed
2 is zero throughout the flow model. Embedded in that view-
point is a quasi-deterministic picture whereby the velocities of
any two fluid particles within each eddy have a null joint proba-
bility for separations beyond a certain value (see Fig. 3 here).
That implied distance becomes the interblade spacing for all
three-dimensional combinations of flow and blade points from
root to tip. Sevik’s predicted frequency spectrum is accordingly
monotonic, as indicated here by Fig. 2's broken curve, and so
the issue of a right shift for broad peaks obviously does not
come up.

Regarding now point (b), the sought-for explanation for a
right shift also turns out to be beyond the reach of two-dimen-
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sional analyses whether or not they account for a continuum of
flow probabilities over the rotor. An example is Mani’s (1971)
otherwise powerful treatment of an airfoil cascade in globally
correlated turbulence. His “‘slice’” model would have failed to
reproduce the spectral shifts for thrust in a true geometry, be-
cause it lacks from the beginning the three-dimensional kine-
matic mechanism that turns out to cause them: The statistical
in-plane projected distances £§'™?), £§*"!) marked here in Fig.
1’s three-dimensional propulsor (the first paper in our series
has uncovered yet another effect of flow statistics sampled three-
dimensionally that a cascade theory could also never explain:
the high concentration of computed sectional lifts at the tips of
the rotor’s radially divergent blades).

2 Kinematics of the Velocity Correlation Tensors in
the Rotor’s Three-Dimensional Cylindrical Coordi-
nate System

Mani’s (1971) two-dimensional cascade analysis considers
a row of blades pitched relative to a freestream aligned with
the implied axis of rotation, z in the present nomenclature. What
would have been our normal-to-blades correlation tensor R™":
becomes simply “*R"""* for him, because all of his blade-normal
directions belong to the same radial station. He breaks up the
R™ function into its R%, R¥, R% component correlations.

Martinez (1991, 1996) did the same for the grazing ‘‘gust’’
correlated flow that defined R™"™ for a three-dimensional rotor
with blades that, unlike Mani's, were radially divergent and
with normal directions that changed from root to tip (the second
of these studies will be referred to as M1 throughout the discus-
sion). The R* component of that blade-sampled flow had the
following form by definition of isotropic turbulence:

pe= - @ (ﬂq) .4 af(q)) _

2 9q 2 0g S

R* has been normalized by the square of the fluctuation ampli-
tudes, following the overall normalization of the thrust solution
in M1’s Eq. (2). The distance £, becomes Ur/R,, the R-divided
and differentially convected, or frozen, distance normal to the
rotor disk, between an arbitrary blade-based point 1 and a fluid-
borne point 2 elsewhere on the rotor. Variable ¢ is the complete
distance separating those two points, as given on Ml's Egq.
(6). The right side of (1) is structurally the same whether one
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Fig.1 In-plane projection distance £, for use in the rotor’s interpretation
of the three-dimensional components R*, R™ of the isotropic velocity
correlation tensor. The value of r; has been put equal to ry, following the
concentration of all r;-dependent functions at r; found in M1.

considers a three-dimensional rotor, as in Martinez (1991), or
a two-dimensional circumferential cutaway of a rotor, as in
Mani (1971).

The fundamental differences between two and three-dimen-
sional theories emerge only through the process of writing down
their specific forms of R¥ and R¥, e.g., for R?, which for
isotropic turbulence becomes

ro = Ge 91
29 Jq

The shortness of (2) relative to (1) is the result of putting the
Kronecker delta 6; that muiltiplies the missing terms in the
general isotropic velocity tensor equal to zero, given that the in-
plane coordinate @ is orthogonal to the rotor’s axial coordinate z
(cf. Hinze's (1975) Egs. (3)-(11)).

The in-plane distance &, collapses to €7r in a two-dimen-
sional theory. Here, as in M1, r appears normalized by R,. In
the full-fledged three-dimensional case in Fig. 1, however, &
becomes cyclical in the correlation time 7:

(2)

£ = rysin [2w(my — mp)/B + Qr], (3a)
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Fig. 3 Quasi-deterministic -picture of the correlation of blade-normal
incident flow velocities in globally uncorrelated models of turbulence
ingestion. The sketch displays the tip sections of a three-dimensional
propulsor. The infinite tail (dashed) of the probability function R":": has
been arbitrarily cut off past a distance “A", which becomes the eddy
“gize." If the value of the combined rotor/turbulence parameter B{)A/U
were small enough, that nonprobabilistic discrete eddy could in fact
affect only one blade as it passes through the rotor disk.

and

£57F =, sin [27(m, — my)/B + Q7). (3b)

The symbol 2 — | denotes the statistical ‘‘gust’” influence of a
fluid point 2 on a blade point 1 in the direction normal to the
blade’s local quarter-chord curve, following strip theory for low
speed aerohydrodynamics. The symbol 1 — 2 describes a similar
but converse relationship for a fluid point 1 and a blade point
2. Variables m, and m, are discrete circumferential blade count-
ers, each ranging from I to B.

The cyclical in-plane projection distances in (3a, b) are the
agents behind the right shifts that Jiang et al. (1991) originally
found in numerical experiments based on elaborate expressions
for direct R™": correlations in space/time, without the benefit
of a zz + z8 + 60 breakup. The shifting role of &;, which does
not appear as such in their code, remained hidden,

Expressions (3a, b) above now showcase that role. They
‘‘contain’’ our earlier comments regarding the shift phenome-
non’s simultaneous reliance on a globally correlated model
where the mutual temporal separation among blades, 2, is not
ignored, and on a three-dimensional description of the statistics
of the flow incident on the rotor: setting £ to zero in (3a, b)

-10 .

2 [ TSeV.i k]z

1010g,,|T? ()|

T L | T v
1.5 2 2.5 -
w/B0

Fig. 2 Sample numerical experiment for the exact theory (solid curve), and for
Sevik's model of effectively nonrotating blades: The exact calculation {"'e" sub-
script) displays a broad hump over the blade-rate frequency and a six percent right

shift for the maximum response.
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Fig. 4(a) Decomposition of Fig. 2's solid curve into its zz and z8 components: The
[T*]? part is locally odd about (w/Bf2 — 1); (+) and (—) mark the negative and
positive "horns” of [T**]2, both of which appear as positive only because the figure
has taken their absolute values. Expressions (7) and (9) of the asymptotic analysis
will explain [T*%]%'s 28 percent latent shift and [T*]%s 5.7 dB rise above [T*"]2.
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Fig. 4(b) Effect of [T]? (from Fig. 4(a) on [T*)?: [ T**]*s negative part pulls [T~]*
down while its positive part pushes [T=]? up. The net effect is a right shift for the

complete solution relative to [T=]* alone.

makes the double summation in m, and m, from | to B yield
zero because the sine is odd in its remaining doubly variable
argument. The requirement of three dimensionality is evident
in Fig. 1’s portrayed role for the sine function itself, which upon
Fourier transformation in R* in (2) produces the multiplicative
factor (w/BSY — v) in M1's Eq. (12) for the quantity hi’. It
was already therefore obvious from that earlier exact expression,
which dates back to Martinez (1991), that the frequency spec-
trum of the cross-correlated thrust [ 7%(w)]? is locally odd about
its w/BSY = 1, 2,.. points, and that it is zero there: [T%(w)]?
is fundamentally antitonal and with no corresponding counter-
part in the more familiar harmonic world of interactions among
rotors and spatially nonuniform but time-invariant flow fields.

Figure 4(a) shows the decomposition of Fig. 2’s solid curve
into its zz and zf exact thrust parts. Within the region marked
(=), [T®w)]? is in fact negative as per the w/BS — 1 factor
for w < Bf2 (Fig. 2 plots the log of the absolute value of
[T*(w)]?). Figure 4(b) displays the effect of [ T?]* on [T=]*:
[T#]? subtracts from the always positive [ T#]? for frequencies
below blade passage and adds to it otherwise. The result is the
right shift whose analytical explanation motivated this paper.
The exact treatment by the author (1991), confirmed indepen-
dently later by Novak (1991), isolated T*’s role in causing
that shift. The following section will now complete the work
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by su?plying closed-form formulas for 7**’s latent shift and for
[T#]* 4+ [T¥]?s final shift as noted in Fig. 2. Those physically
revealing formulas are now made possible for the first time by
M1’s closed-form results, summarized next.

3 Closed-Form Shift Analysis Based on Part I's
Asymptotic Results for B > 1

The final product of M1's asymptotic analysis are a pair of
expressions, the first for the frequency spectrum of the total
thrust and the second for the contribution of the cross-correlated
*z6" flow components of the random flow striking the rotor,
Respectively, they are

[TMﬂ(W)]?: . [‘}"z’-(w}]z + [Tw(ld)]i

_l7xt (AN B
R,

T [1+ T2
(e

I [ en(zm-v)]

Ry /R, s
Ry IR, [(¥B)* + (yr)*]°

R:"’Rl
J. drG(r)

RylR,

3273
J?

(4a)
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and

-5 () & (-1
[T(w)] = 7 \a B EVBQ 1

ﬂ.i.-ll""Rr 3
Xf dr — 00
RylR, [(¥B)" + (yr)°]

The *‘a’’ subscript on the left-hand sides of (4a, b) stands
again for asymptotic. B is the number of blades in the rotor; J,
is its advance ratio mU/2R,, whose spanwise running version
is J(r) = J/r; T is short for wA/U; Ry/R, is a tip-relief
parameter which strip aerodynamics injects into the rotor the-
ory; and A/R, is ratio of the integral scale to R,.

The remaining two quantities in (4a, b) to be defined are the
radial *‘wave number’’ 7y that arises in spite of the fact that the
analysis has been kept in the spatial domain, and G(r), which is
proportional to the square of the amplitude of the Sears function.
Respectively, they are

(4b)

w * {BOA\? R,
e () 1 (F) @
__[bW/RY
)= b+ JA(r)w?
2 (6)

x "
L + [22Tb(r)/ AN + 721 T2 (r)

Figure 4(a) remarked on the formally computed right
“horn’’ of the [T¥)? cross-correlated thrust. The frequency
position where [7%(w)]? reaches that peak now follows readily
from (4b). One simply passes the frequency-dependent constant
w/BQ! — v from outside to inside the r integral, which then
looks like

_ﬁﬁ_ v
[(vB)* + (yr)*]

The next step is to differentiate the contents of the curly brackets
with respect to w/Bf2. The roots of the resulting equation are

Sy
BQ) .

_ . L J(RalR) \/Vz R (R,M):fmm,f

RonfR'
f drr’G(r)

Ryl

5w

- +i(£) Lo+ (RIA) (Rl R)?
_-'a'r\E Reie B? :

The (—) solution in (7), with v = 1, marks the frequency point
of the negative trough of [ 7%]? to the left of w/BS) = 1 observed
in Fig. 4(a). The (+) frequency marks the positive peak of
[T*]* to the right of w/BS) = 1. Together these account for the
“‘latent’’ shift of the rotor/turbulence system,

There is one hidden assumption in (7), to be checked a
posteriori: that the latent shifts predicted by it will be small. If
the equation’s right-hand side is small, it follows from the left
that w/BS) =~ v (=1 for blade rate), and so, that y = R,/A for
w/BQ =~ v in MI's Eq. (9). M1 established that for A/R, >
1/B the remaining r® integrand in the v sum of (4a, b) here
then becomes highly concentrated at its top value R./R,, which
may then be substituted into the denominator of the term to be
differentiated—hence (7)’s dependence on the end-point r
value RB"‘}R.-.

(N
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A similar operation applied to (4a) yields the theoretical shift
of the complete signature:

w

ol L
(33"2 ):[T"]’+:T"1’:.,...
3v
= ﬁ {—1 + \/1 +
(8a)

The constant 20J%(Ru/R)/(97%w?) = 20(R/ Ry ) J2/
(97m*v?) is roughly only 1 for v = 1 when R./R, ~ 1, and for
such cases one thus may approximate (8a) to read

© .,
B

207*(Ru/R,) [

2 2
%zyz H: + (R:fﬁ) (Rel'l"(Rr) ]} .

Bz

)m“fvn‘“i’)m.

2 2 2 2
sl (_f_e,_) [Ver(R,fA) (Ra/R,)
Ircw Rcff B

The expressions in (7) and (8a, ) expose analytically the
dependence of both the latent and actual shifts on the turbulence
and rotor parameters A/R,, B, Ry/R,, and J,. The question
naturally comes up as to whether it would be practical to use
impeller-like devices to measure A by means-of (8b). The
actual shift is small mostly because the out-front constant in
(8b), 1/37?, is only about three percent. By comparison the
constant in (7), 1/m5'2, is 14 percent. Latent and actual shifts
both increase with decreasing eddy size and with a lower num-
ber of blades. Moreover, the latent shift of the » = 2 modal
contribution of [7*]* is twice as great as that of v = 1 for
turbulence scales satisfying A/R, = 1/B, since the radical in
(7) reduces then to v. The same is true of the total shift as
given in (8b): for A/R, = 1/B it is also ‘‘harmonic’” in v.

Returning to (7) with A/R, > 1/B, one now notes that the
latent shift becomes then proportional to R,/R.s, the inverse of
the tip-relief parameter, whereas the total shift of (85) depends
on the square of that parameter.

The last of the shift questions put to the new asymptotic
theory is: just how latent is latent?; i.e., by how much is [T%]?
overwhelmed by [T%]? in a given rotor/turbulence interaction
problem? The answer clearly lies with the following ratio,
whose analytical right side now falls out from the new asymp-
totic equations (cf. M1’s Eq. (4b)):

] . (8b)

Tw
== LulR? + R*
o Ll 2 (R
o % gl NS- R,
5 Lol R¥] e
BZR;

. [ R
) o

V5 \ Rerr
The ““T¥." designation at the bottom of the vertical marker
on the left-hand side indicates evaluation at (7) s ( + ) frequency
solution.

It was intuitively clear from the beginning that the *‘differen-
tial shifting’’ of inboard sections had to be greater than that
of outboard sections—the former are more feathered into the
freestream and their chords are therefore more vulnerable to
the “‘6"* part of the *‘zf" cross statistics of the impinging turbu-
lence. What is remarkable about the result in (9) is that that
guess is essentially complete: A does not figure in it at all, and
neither do the number of blades B nor the modal counter .
Equation (9) led to the development of Section 5 below, a
generalization of the present theory that considers spatially in-
homogeneous flows concentrated at the hub.

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



101og,,|7% (w)|

T T T T =T

T
1.5 2 2.5 3
w/B0

Fig. 5(a) Calculation of the exact » = 1 mode of [T**]? and [T*"]? for the R.«/R:

= 5 case. [T=,]? does not bottom out precisely at «/BS2 = 1 because it contains
also the results of the » = —1 calculation, which alters it slightly.
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Fig. 5(b) Same as Fig. 5(a) but for » = 2

4 Demonstration of the Shift Formulas

Figure 4(b): The computed latent right shift for [T%]2 is
28 percent. The (+) solution of (7) for v = 1 gives 28 percent
again. At this value of frequency [7%]2 is higher than [T*)?
by 5.71 dB; whereas (9) predicts 5.46 dB. The total shift ob-
served in Fig. 2 is six percent. Expression (8b) yields six per-
cent.

The new set of exact calculations in Figs. 5(a, &) have a
twofold mission upon comparison to Figs. 2 and 4(a): (1) to
investigate the effects of the tip relief ratio R./R,, which will
now be 3 rather than | (all other parameters will remain the
same); and (2) to show the v breakup of the rigorously com-
puted solution in order to bring out the so-far hidden workings
of the hump at v = 2.

Figure 5(a) displays a latent right shift of 38 percent for
[T%,]2 relative to [T%,]2. And (7) gives 37 percent. This
establishes the correctness of (7) regarding R./R,. The total
computed v = 1 shift [T%,]2 + [Ti5,]12 is 12.3 percent (total
curve not shown). The prediction of (8a) is 17.6 percent
[(8h)’s estimate is unfortunately worse; at any rate, the true
total shift of the v-added solution for this case is only nine
percent, unfortunately almost half that predicted by (8a). Such
is the effect of mode-to-mode “‘interference’’ for small values
of Re/R,]. Equations (8a, b) seem to be breaking down only
for this artificial case of extreme tip relief. The rigorously com-
puted nine percent shift for R.q/R, = .5 proves in any case that

Journal of Applied Mechanics

inboard sections do indeed contribute more efficiently to the
shifting process than those closer to the tips.

Fig. 5(a) still: [T%,]2 lies above [ T%., ]2 by 2.17 dB. Expres-
sion (9) yields 2.44, i.e., 3.02 dB less than 5.46, which was the
corresponding number in Fig. 4(a) when R./R, was 1. Fig.
5(b) considers v = 2. Equation (9) claims that the gap between
[T%.,]2 and [T%,]? should be the same as that of Fig. 5(a)
for v = 1: that the difference should be v-invariant. Figure 5(b)
confirms that conclusion: [ T%,]2 passes above [T%.,]%'s maxi-
mum by 2.31 dB. [T%,]1%s rigorously calculated latent shift
occurs just off the plotted abscissa, at about 65 percent. Equation
(7)’s prediction is 62 percent and this proves (7)’s correctness
with respect to v, The rigorously calculated total shift for
[T%,17 + [T#,]2 s 19 percent (total curve not shown). Equa-
tion (8a)’s result is 23 percent.

5 Hub-Strong Quasi-Isotropic Flow With a Constant
Integral Scale A

The normalization constant of 7?(w) in M1's Eq. (2) in-
cluded the square of turbulence fluctuations «?. The purpose of
this final section will be to construct an amplitude-modulated
quasi-isotropic (or quasi anisotropic) flow by generalizing the
meaning of that constant, which in what follows will undergo
the following transformation:
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Fig. 6 Asymptotic predictions of frequency thrust spectra for a quasli-isotropic
fiow concentrated at the hub; o = 4 in (10)

ut = u(ryulr) = uZ(R—*’-@)a (M)g . Q0)

n ra

There are two reasons for this change, as well as at least two
experimental studies justifying it:

(1) Regarding the r|, r, dependence of (10)’s right side:
(9), which resulted for constant u?, has ferreted out the in-
creased influence of near-hub blade stations (R./R, = R./R,)
on the shifting process. It will be the purpose of these r, r;
dependent factors to now model a radially inhomogeneous,
*‘hub-strong’’ turbulent flow by choosing a power o that will
offset the combined effects of the kinematic sampling by the
rotor and the » dependence of its aerodynamic transfer func-
tions—the effects that produced the r* power in (4b)’s r integ-
rand. It follows that o must be greater than 3 in order to achieve
this, and to thereby provide for efficient shifting. The o > 3
hub-flow criterion is yet another spinoff result of the new as-
ymptotic theory, which, incidentally, did not set out to find it.
It will be interesting to note that even though (8a, &) and (9)
inspired the generalization in (10), they no longer support it
by accounting for (10)’s features: all three expressions grossly
overestimate the shifting process when applied blindly with
“Ree/ R, = Ry/IR,.

The physical basis for the r,, r; factors in (10) is twofold:
(a) it is not hard to imagine real-life conditions that would
promote high turbulence intensities near a rotor’s hub, both for
the incident and for the hub's own secondary ‘‘self'’ flows;
and (b) turbulence that appears to be highly sheared could
nonetheless behave isotropically from point to point; i.e., its
*“anisotropy”” could be due only to its *‘globally’’ inhomoge-
neous character. Breit and Dickinson ( 1990) have demonstrated
this for a relevant flow by properly scaling its local wave num-
ber spectra, and by properly including observed variations in
the postulated integral scale A that are ignored here in Eq. 10’s
simple model. These two investigators processed data taken
point by point across the flow’s shear direction and found that
the results collapsed to a single curve: the ‘‘Liepmann spec-
trum’’ —essentially the spatial Fourier transform of (1) here.

Figure 6 shows calculations based on (4a, b) with their r
integrands changed to include (10)’s factor of (R,/rRt)* for
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r; = r; = r. The power o is four in order to fulfill the >5/2
requirement. The purpose of the exercise is to demonstrate that
this concocted example of an inhomogeneous turbulent flow
may in fact turn [7%]%s large latent right shift into an actual
one for the total thrust [T%]% + [T#]2. [T*]2’s right horn now
crosses [T%]2. The total calculated shift for [T%]2 + [7%]2 is
now roughly 19 percent, a substantial increase from the homo-
geneous isotropic case of Fig. 2.

6. Conclusions

The right shift of the maximum broadband thrust observed
in rigorous numerical calculations is *‘real.”’ The main objective
of this paper was to uncover its causes analytically. Equations
(7), (8k), and (9) have achieved that goal by reproducing the
formally generated data and by explaining it physically in terms
of the problem’s flow and aerohydrodynamic parameters. One
such conclusion is that the right-shifting rises with the square
of the rotor’s advance ratio as the propulsor is increasingly
made to ‘‘sample’’ statistical flow components parallel to its
plane of rotation.
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Analytic Solution of Euler’s
Equations of Motion for an
Asymmetric Rigid Body

The problem of the time evolution of the angular velocity of a spinning rigid body,
subject to torques about three axes, is considered, An analytic solution is derived
that remains valid when no symmetry assumption can be made. The solution is
expressed as a first-order correction to a previous solution, which required a symme-
try or near-symmetry assumption. Another advantage of the new solution (over the

SJormer) is that it remains valid for large initial conditions of the transverse angular

velocities.

1 Introduction

In recent years a considerable amount of effort has been
devoted to the development of a comprehensive theory that will
allow a better understanding of the complex dynamic behavior
associated with the motion of rotating bodies. A cornerstone in
this effort is the development of analytic solutions that can
describe—at least qualitatively—the problem dynamics. The
system of the associated equations, the celebrated Euler’s equa-
tions of motion for a rigid body, consists of three nonlinear,
coupled differential equations, the complete general solution of
which is still unknown. Special cases for which solutions have
been found include the torque-free rigid body and the forced
symmetric case. Solutions for these two particular cases were
known for some time and have been reported in the literature
(Golubev, 1953; Leimanis, 1965; Greenwood, 1988). The dis-
covery of complete solutions for those and other special cases,
initially gave rise to optimism that a general solution was in
sight; however, since then progress has been remarkably slow.
The conjecture that studying several special cases would eventu-
ally lead to a comprehensive theory of the problem proved to
be false. In fact, a complete characterization of the motion of
a rotating solid body quickly turned out to be a formidable task,
eluding the wit of some of the most prominent mathematicians
of our time; sece, for example, Leimanis (1965) and Golubev
(1953) and the references therein. Even today, it is still not
clear that a complete solution even exists. (It is well known,
however, that for the closely related problem of a heavy rigid
body rotating about a fixed point, integrability is possible for
only four special cases (Golubev, 1953).)

Most attempts to generalize the previous results were con-
fined to some kind of perturbation approach of the known and
well understood integrable, torque-free, and/or symmetry cases
(Kraige and Junkins, 1976; van der Ha, 1984; Kane and Levin-
son, 1987; Or, 1992). Recently, significant results made it possi-
ble to extend the existing theory to include the attitude motion
of a near-symmetric spinning rigid body under the influence of
constant (Longuski, 1991; Tsiotras and Longuski, 1991a) and
time-varying torques (Tsiotras and Longuski, 1991b, 1993;
Longuski and Tsiotras, 1993 ). The purpose of the present work
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is to extend these results to a spinning body with large asymme-
tries, subject to large initial angular velocities.

2 Equations and Assumptions

We are mainly interested in the problem of spin-up maneu-
vers of a non-symmetric spinning body in space, subject to
constant torques and nonzero initial conditions. To this end, let
M,, M,, and M; denote the torques (in the body-fixed frame)
acting on a rigid body, and let w, w,, and w, denote the angular
velocity components in the same frame. Then Euler’s equations
of motion for a rotating rigid body with principal axes at the
center of mass are written as

. M, L-1h

w=—++ Wl la
1 [| I| 23 ( ]
; M, I~ I

W =—+ w b
2 2 A W) (1b)
‘ My I — L

Wy =—+ Wiws. le
3= A 12 (le)

These equations describe the evolution in time of the angular
velocity components w,, ws, wa in the body-fixed frame. For
consistency we will assume that the spin axis is the 3-axis,
corresponding to the maximum moment of inertia, and also that
the ordering of the other principal moments of inertia is given
by the inequalities I; > I, = L.

We henceforth define the spin-up problem of a rigid body
rotating about its 3-axis, when the following conditions are
satisfied:

M3 + M3 = M3 I1wi(0) + Bwi(0) = Bwi(0) (2)

along with the condition that sgn (M5) = sgn (ws(0)). (Here
sgn denotes the signum function defined as usual by sgn(x) =
+1 for x > 0 and sgn(x) = —1 for x < 0.) This last condition
simply states the requirement for spin-up, whereas the inequali-
ties in (2) restrict the angles of the torque vector and the angular
momentum vector at time ¢+ = O to be less than or equal to
45 deg from the body 3-axis. This, according to the previous
discussion, implies that the transverse torques M,, M,, as well as
the initial conditions w, (0), w,(0), are considered as undesired
deviations or perturbations from the pure spin case, namely
when M, = M, = w, = w,; = (. In practical problems these
unwanted deviations tend to remain indeed small throughout
the maneuver.

One more parameter needs to be introduced in order to de-
scribe the ‘‘relative effect’” of the two inequalities (2) in the
solution. This parameter, defined by

and
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x VM? + M3

P = Trwi(0)

describes the angle of departure of the angular momentum vector
from its initial state (the angular momentum vector bias). During a
spin-up maneuver (Longuski et al., 1989), the angular momentum
vector traces out a spiral path about a line in inertial space having
an angle p, from the inertial 3-axis (see Fig. 1). The angle p; is
small for cases where the transverse torques are ‘‘small’’ compared
with the quantity fw3(0). The formula for p, applies even for
asymmetric bodies as long as the angle of departure is small and
the body is spinning about a stable principal axis. Throughout this
work we assume that p, is relatively small, an assumption that is
usually true for most satellite applications.

3 Analytic Solution

3.1 Assumptions. If we assume a near-symmetric (or
symmetric) spinning rigid body with the spin axis being its
axis of near-symmetry (or symmetry ), then the near-symmetry
assumption (f; = I,) allows one to neglect the second term on
the right-hand side of (1¢) and therefore safely assume that the
solution of w, is approximated very closely by

wi(t) = (Ms/5)1 + w,(0). (3)

This allows the decoupling and complete integration of Eqgs.
(1). The use of complex notation facilitates the analysis ( Tsio-
tras and Longuski, 1991a, 1991b, 1993; Longuski and Tsiotras,
1993). Also introducing, for convenience, the new independent
variable 7 £ wj(t), one then writes the differential equation
for the transverse angular velocities w, and w, as

Q' +ipmQ=F (4)

where prime denotes differentiation with respect to 7, i =
V—1 and where (Tsiotras and Longuski, 1993)

0a wl\/k_z + :'wzvfk_, (5a)

F 2 (ML) (LIM)Wk + (Mol ) (IIMs )Wk, (5b)
p & k(LIMs), Kk & (I — L),

ky & (I = I)/L, k& Yk, (5¢)

Integrating (4) one obtains the solution for w, and w, from

Q) = Q exp (fg-rz)

TZ)FJ. exp (-—f-gul)du

= ), exp (ig'rz) + exp (f%TZ)F

N

+ exp (i

X ﬁ {sgn (T)E(c) — sgn (1¢)E(ae)} (6)

where 7o = wJ(0) and Q & Q(7,) exp (—i(p/2)78) and
where §)(7,) is the initial condition at 7 = 74 (¢ = 0). The
function E(*) in (6) represents the complex Fresnel integral
of the first kind (Abramowitz and Stegun, 1972; Tsiotras and
Longuski, 1993), defined by

E(x) & f exp (—i Euz)du.
0 2

The parameter o is defined by o & 7V p/n. (Here we obviously
assume M; > 0, so that p > 0; the case when p < 0 can be
treated similarly (Tsiotras and Longuski, 1993). Equation (6)
gives the complete solution for the transverse components of
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Fig. 1 Angular momentum behavior during spin-up (Longuski et al.,
1989)

the angular velocity w, and w; in the body-fixed frame, and
for the symmetric case it provides the exact solution. For the
nonsymmetric case, the accuracy of solution (6) depends on
the ‘‘smallness’’ of the product w,w,, which will be discussed
next.

3.2 The Effect of Asymmetry. In order to have a mea-
sure of the body asymmetry, we introduce the following asym-
metry parameter:

!1‘“!2
L

Because of the well-known relationship I, + s = [, between
the moments of inertia (Greenwood, 1988 ) —for the assumed
ordering of the principal axes—the parameter e takes values in
the range 0 = e = 1. The case of ¢ = () corresponds to complete
symmetry (about the 3-axis), whereas the extreme case of ¢ =
I (not considered here) corresponds to complete asymmetry
(about the 3-axis). For the latter case one has I; = [, and I, =
0, i.e., the body resembles a thin rod along the 2-axis. (In the
current work when we discuss a nonsymmetric problem we
have in mind values of e greater than 0.1 and perhaps as high
as about 0.7.)

We note in passing, that the validity of solution (6) is not
confined to near-symmetry cases. To understand this point, no-
tice that the neglected term

I - 5L

a

e 4

g(t) = wy()wa(2) (7)
in Eq. (1¢) is small not only for the near-symmetry case, i.e.,
when I, = L, but also when the transverse angular velocity
components w, and w, are small. This is indeed the case, for
example, for a spin-stabilized vehicle (spinning about its 3-
axis), when w; and w, tend to remain small for all times. For
the pure spin case of a symmetric body we have of course that
w; = wy = 0. This fact justifies the often used terminology in
the spacecraft dynamics literature which refers to w, and w; as
the angular velocity error components. The previous assump-
tion about the smallness of the term in Eq. (7) however does
not incorporate the case where the initial conditions w,(0) and
w;(0) are large (compared to the initial spin rate w;(0)). As
can be easily verified in such cases, the initial error

L -1
I

3

g(0) = w; (0)w,(0)

propagates quickly and renders the analytic solution inaccurate
after a short time interval. On the other hand, as can also be
easily verified through numerical simulations, analytic solutions
based on the near-symmetry assumption remain insensitive to
large inertia differences, as long as the initial conditions for w,
and w, are zero. Therefore, the intent of this paper is to extend
the analytic solutions for a near-symmetric rigid body subject
to constant torques ( Tsiotras and Longuski, 1991a), when both
large asymmetries and nonzero initial conditions for the trans-
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verse angular velocities are considered at the same time. In such
a case, the neglected term (7) may not be negligible and the
exact solution for w; may depart significantly from the linear
solution (3) for ws.

3.3 General Theory. A first correction to the linear zero-
order solution wJ( ) is obtained as follows, Using solution (6),
the differential equation for w; can be approximated by

(8)

where the superscript zero denotes the zero-order solution of
(1) (i.e., the solution with the term (7) in (1¢) neglected).
From (6) we can equivalently replace equation (8) with

Wy = Myl + e wiwh

wi =1+ ¢eIm[(Q%?] (&)]

where € & (I, — L,)/2Msk and Q° = w? Yk, + i wd ki, prime
again denotes differentiation with respect to the independent
variable 7 = w3 and Im(-) denotes the imaginary part of a
complex number. Under these assumptions and integrating (9)
with respect to T, one gets for the first-order correction for ws:

wi(t) =7+ €eIm J.r [Q%w)]%du (10)

The first-order solution for w;, and w; is then given by the
solution of the differential equation

Q' + ipws(T)Q2 = F. (11)

Integrating, one obtains

Q) = Q7o) exp [ipf w3{u)du]

+ exp [Ep J‘r w;(u)dule

X J.T exp [—ip r w;(u)du]du. (12)

[ []

Notice that this expression provides the general exact solution
for () if knowledge of the time history of wj; is available a
priori. Of course, this is not possible, in general, because of the
coupled character of Egs. (1). However, we will assume that
Eq. (10) gives a very accurate approximation of the exact ws,
which can be used in (12).

The zero-order solution 2°(-) requited in (10) is given in
(6). From the asymptotic expansion of the complex Fresnel
integral one has that (Abramowitz and Stegun, 1972)

1-1i —imx?
E(x) = i exp( -nrx 12)
2 imx
1 1-3
X141 + — aaps (13
{ irx*  (imx?)? } (13)

Thus, the Fresnel integral appearing in (6) can be approximated
by

[[ o (18 ) [t

o P L

B exp(—i(pfz)TS)]
Ta '

Substituting this expression in (6) and carrying out the algebraic
manipulations, one approximates [Q2°(+)]* by
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] 2
[Q°%(7))* = ro exp(ipT?) + :lz +r SpelET)
T T

where r; (j = 0, 1, 2) are complex constants given by

2
[Qo - i—F—cxp(—iE'r%)]
PTo 2

Il

Yo

The integral of [©2°(+)]? is then given by
f [Q°(u))*du
To
= roho(To, T3 p) + (7o, T) + Rha(T0, 75 )
where

ho(To, T3 p) & f exp(ipu®)du

= ‘/% [sgn(7)E(7V2p/m) ~ sgn(7o) E(ToV2p/m)]

h.(fo.?)éf -g—l:=i—l

To T

T - 2
halny 75.p) & _[ expli(pl2)) o

1[4 -+

where bar denotes the complex conjugate and where
Ei(x) & f Zdu
x U

is called the exponential integral (Abramowitz and Stegun,
1972). The integrals of k; (j = 0, 1, 2) can be then computed
as follows:

H(I(T(In T P)

A f ho(To, u; pldu
To

I

-—\[-2;; sgn(7o) E(roN2p/m)(T — T¢)

+ ‘L—i sgn (79) f E(u\2ptm)du (14)

where the last integral is given by

f E(m2plm)dr = TE(m2plT) + 32‘— exp(ip7?). (15)
om

Similarly,

Hy(1o, T) & f hi(To, w)du = Tt ln(i)
o To To
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and

Hy(7o, T3 p) & I ha(To, u; p)du

o

1 LR
= EE;(g 1'3)(7 - To) — 5.[ E:(% uz)a‘u

(16)

where the last integral can be evaluated using

. E 2 = : E 2 ‘E 2
J'E’(zf )d’r TEl(z T ) + 2_"3"9(’2 u )d"‘- an

We therefore have that the integral of w;(-) required in (12)
is given by

- ok o8 2
f wi(u)du = T E" + e Im( 3, rH). (18)
To

j=0

Equation (18) gives the final expression for the integral of
ws(+) required in (12).

In order to proceed with our analysis, we need to calculate
the last integral in (12). Any attempt to evaluate this integral
by direct substitution of (18) into

I{To, T3 p) = J'T exp[—ip _r wg(u)dv]du (19)

To 0

is futile. Notice however, that because of the oscillatory behav-
ior of the kernel of the integral (19) one needs to know only
the secular behavior of (18) in order to capture the essential
contribution of (19). Thus, we next compute the secular effect
due to the integrals Hy(7q, 7; p) and Hy(7o, 7; p). The integral
H, (14, 7) already has the required form.

From (14) and (15) and the asymptotic approximation of
the Fresnel integral (13) one can immediately verify that, within
a first-order approximation, the integral Hy(7o, T; p) behaves
as

Ho(To, 75 p) ~ AQ + AT (20)

where

AQ & — — exp(ipTd),
2p

2

Al a g [l il sgn(fn)E’(Tn\J’Zp!ﬂ')] .
p

Similarly, using (16) and (17) and the fact that lim,... Ei(x)
= 0, one can show that the integral H,(7,, 7; p) behaves, to a
first-order approximation, as

Hy(7g, 75 p) ~ AS + AT
where

2

AL & — \E [1 108 Sgn(To)E(Ta\(N—W)J .

Also writing the integral H, (7, 7) in the form
H\(Tg, 7) = Al + AlT — In(7) (21)
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where
A2 In(te) =1, A} 2 &
To
we have for the secular part of (18)
” S
f wilu)du = ch —5: + by + by + by In(7) (22)
To

where
bo & € Im(roAS + rAY + nAY)
by 2 e Im(reAd + nAl + rAd)
by & —¢Im(ry).
Unfortunately, the logarithmic term in (22) leads to an intracta-
ble form when substituted into (19) and we therefore approxi-
mate the former expression by

T ,rz T%
wi(u)duy =~ — — — + by + byt (23)

; 2 2

where by = e Im(r,A) — r, + rA%). This approximation
amounts to the assumption that In(7/7) ~ 0 in Eq. (21).
Since the logarithmic function is dominated everywhere by any
polynomial, we expect the error committed in passing from
(22) to (23) to be relatively small, at least as 7 — «. Using
(23) in (19) we can finally write

f exp[ﬂip r w;(u)du]du

o n

~ exp(ig-yo) f exp[—ig(u + b,)z]da

= EXP("‘E%)\E [sgn(7)E(F) — sgn(To)E(80)]

where yo & 75 + b} — 2b3, # =7 + by and & = T p/7.

3.4 Simplified Analysis. The analysis of the previous
subsection allows for a direct calculation of the solution (+)
from (12). In most cases encountered in practice, however, a
simplified version of the previous procedure is often adequate.
For example, for the case when p, < 1 (see Fig. 1) the initial
conditions have a more profound effect than the acting torques
in solution (6), and we can take just the asymptotic contribution
of the nonhomogeneous part of (6) to approximate the zero-
order solution Q°(+). Writing

Q%7) =~ {ng + Fﬁ sgn (7o) [(1 — i)/2 — E(an)]}

X exp(i%rz) 4 By exp(f%rz) ,

substituting this expression into (10}, and approximating E(+)
by its asymptotic limit E() = (1 — i)/2, as x = o, we get
for ws(+) that

wi(T) =7+ ag
where « is the constant

ay & eVm/2p sgn (7o) Im( B3[5(1 + i) — E(ToV2p/m)1}.

We can therefore write for the first-order solution (11) of the
transverse angular velocities
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Qt) = Qf expliph(r)] (24)

+cxp{:’ph(f}]Ff expl—iph(u)|du

where

2

h(T) & T? + aoT

and Q3 2 Q7o) exp[—iph(7o)]. From Egs. (6), (12), and
(24) it is seen that the first-order solution for the transverse
angular velocities w; and w, may be obtained in the same form
as the zero-order solution; the initial condition of 7, however,
has to be modified to include ;. In other words, (24) can also
be written in the more explicit form

Qr) = ﬁﬂcxp(;'g%z) + exp(fgf’)F‘/é’E{sgn(f)E(a)

= sgn(F)E(d0)} (25)
where now Q9 2 (7o) exp(—i(p/2)78), ¥ = 7 + a and &
A Fp/w. It is interesting to compare Eq. (25) with (6). We
see that the two equations have exactly the same form, but that
Eq. (25) has a frequency shift which depends directly on e.

4 A Formula for the Error

In this section we derive an error formula for the zeroth-
order solution derived in (6), that is, we seek an expression for
the difference between the exact solution and the approximate
solution for the angular velocities, obtained by omitting the
term (I, — I)w,w./1; in Eq. (1¢). Throughout this section, for
notational convenience, we rewrite Eq. (1) in the form

X = ayxaxy + U, (26a)
X, = daXaX, + Uy (26b)
X2 = XX + Us (26¢)
where a;, x; and u; (j = 1, 2, 3) are defined by
x & Lwy, x & Lw, x4 hLw; (27a)
waEM, waitM, uitM (27b)
a.ééii—h azé—l%;l—h, a;é%z—fz. (27¢)

We also rewrite the equations that describe the reduced (zeroth-
order) system in the form

£ = a,xx% + u, (28a)
23 = axixY + u, (28b)
3 = us. (28¢)

Given any positive number T € [0, %), our aim is to compute
the error between the solutions of (26) and (28) over the time
interval 0 = t+ = T. We can rewrite equations (26) and (28)
in the compact form

(29)
(30)

X = f(x) + g(x)
20 = £ (x°)

where x = (x,, x3, x3), x” = (x7, x5, x}) and f: R? = R? and
g: R? = R? are the functions defined by
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ayX2X3 + ", 0
axax, +up |, g(x) 2 0
Uy az X Xy

f(x) 2 . (31)

We also assume that (29) and (30) are subject to the same initial
conditions, that is, x(0) = x°(0). Throughout the following
discussion || - || will denote the usual Euclidean norm (or 2-norm)
on R*, namely, ||x] & (x} + x3 + x})'2.

Lemma 4.1,
the inequality

The solution of the exact system (26 ), satisfies

flx(t)]| = [l|T + fIx(0)|| & B
forall 0 =t = T, where u = (uy, Uy, us).

Proof. Multiplying Eq. (26a) by x,, Eq. (26b) by x, and
Eq. (26¢) by x; and adding, and since a, + a; + a3 = 0, one
gets that

XX, + KXy + )33).'3 = x; + uyx; + HaXy.

In other words,

L4 i =)

2dt t32)

where (-, +) denotes the usual inner product on R*, namely
(x,y) & £}, x;;. Using the Cauchy-Schwarz inequality (32)
gives

19 2 =l - 1.

2 dt (53

The 2-norm ||+ || is a differentiable function on R?, so the differ-
ential inequality (33) can be solved for ||x(- )| (here u is con-
stant) to obtain

el = lfeelle + NlxC0)I,

In particular, ||x(2)|| = suposi=r [lullf + |x(0)|| = B, as claimed.
O

O0=t=T (34)

This result should not be surprising. If one looks carefully,
ones sees that the vector x defined in Eq. (27a) is the angular
momentum vector H, which obeys the equation dH/dt = M.
This differential equation for H requires that both H and M be
expressed in the same coordinate system and that differentiation
be carried out with respect to an inertial reference frame. In
general, given the components M,, M,, M; of M in the body-
fixed system, does not provide any immediate information about
the components of M with respect to another (inertial) coordi-
nate system. However, the magnitude of M is independent of the
coordinate system. Equation (34 ) simply states the relationship
between the magnitude of the acting torques and the time history
of the magnitude of the angular momentum vector H. With this
observation in mind, one can easily re-derive (34) starting from
Euler’s equation dH/dr = M.

Lemma 4.2. Given a fixed positive number T, there exist
positive constants M and L, such that the following conditions
hold forall 0 = t = T.

lgx(NNl = M
IfCx(2)) = fFCx° NI = Lix(e) — x°(0)

(35a)
(35b)

Proof. From Lemma 4.1 we have that for t € [0, T] all
solutions of (26) satisfy ||lx(¢)|| = B. In particular, | x(1)| =

B,j=1,2,3, forall t € [0, T], where |- | denotes absolute
value. Clearly,

lgxCOll = las| | x, ()| | x2(1)| = |as| B> & M.
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Now let B) & maXo<i<r { | x7(2)[, | x3(2)|, | x3(#)| }. This num-
ber can be computed immediately, since the solution x°(-) of
the system (28) is known. If we define B, £ max (B, B, }, then
we have that all solutions of (29) and (30) are confined inside
the region {x € R*:|x| = By} for all 0 =< ¢ < T. The partial
derivatives of f are then bounded by

[0filéx;| =R, 1=i,j=3, 0=t=<T, |d=B58

where R & max{|a,|, |a;|} By and by the Mean Value Theo-
rem (Boothby, 1986), we have

IF(x(0)) = f(x°@O)I = 3R ||lx(2) = x°(0)]|

for all 0 = r = T, and therefore (35b) is satisfied with L &
3R. This completes the proof. O

Lemma 4.2 implies that over the time interval 0 = ¢ = T the
function g is bounded by M and the function f is Lipschitz
continuous with Lipschitz constant L. These two results allow
us, as the next theorem states, to find an explicit bound for the
error of the approximate solution.

Theorem 4.1. Let T be a given positive number and let M,
L as in Lemma 4.2. Then, for x(0) = x°(0), the error between
the solutions x(+ ) and x°(+ ) over the time interval 0 = t < T
is given by

M
[lx(t)y = x°(t)|| = 5 e, 0=r1r=T.

Proof. Subtract (30) from (29) to obtain
% =20 = f(x) = f(x°) + g(x).

By integrating (36) and considering norms, we obtain the fol-
lowing estimate:

(36)

(1) = 00y = fo IFCx(s)) = FCx0s))lds

; f lgx(s))lds.

Now, use of Lemma 4.2 implies that
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Fig. 2 Zero-order versus exact solutions for a,
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Fig. 3 First-order versus exact solutions for w,

lx(2) = x°(0)) = Lf llx(s) — x°(s)|ds + Mt. (37)
1]

Now, applying Gronwall’s Lemma (Hille, 1969) to (37) gives
finally that

lx(2) = x°(t)|| = —’ge”. (38)

This completes the proof. |

This error formula, involves only known quantities of the
problem (time duration T of the maneuver, inertias /,, [, I,
acting torques M,, M,, M5, and initial conditions x,(0), x,(0),
and x3(0)) and can be computed immediately once these data
are given. For most of the applications encountered in spacecraft
problems it turns out, however, that (38) provides a very con-
servative estimate of the true error, but usually this is the
most one can expect, without resorting to the numerical solu-
tion of (1).

Having established an error formula for the angular momen-
tum, it is an easy exercise to find a corresponding error formula
for the angular velocity vector, using the simple relation be-
tween the two. Thus, the following corollary holds,

Corollary 4.1. Let K 2 max {1/1}, 1/L,, 1/1;}. The error
between the exact and the zeroth order solutions of the angular
velocities over the time interval 0 < t < T is given by

M
oty - w0l = KX e (39)
Progf. It follows immediately from the fact that
W 1}1| 0 0 Xy
W = 0 ll!z 0 X2
ws 0 0 /5 X3
and therefore that
(D)l = max {1/4,, 1/1;, 115} |x()]| = K [|x(1)||
forall0 =t =T. ]
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5 Numerical Example

The analytic solution of Euler's equations of motion for an
asymmetric rigid body is applied to a numerical example. The
mass properties of the spinning body are chosen as I, = 3500
kg-m?, I, = 1000 kg+-m?* and I; = 4200 kg m?. The constant
torques are assumed to be M, = —1.2 N'm, M, = 1.5 N-m,
M; = 13.5 N-m and the initial conditions are set to w,(0) =
0.1 r/s, w:(0) = —=0.2 r/s and w;(0) = 0.33 r/s. Figure 2
shows the zero-order solution versus the exact solution for w, .
Figure 3 shows the first-order solution versus the exact solution
for w,. Notice the dramatic improvement of the first-order solu-
tion over the zero-order solution for this problem, where the
asymmetry parameter, ¢, is 60 percent. The results for the w,
component of the angular velocity are similar. Finally, Fig. 4
presents the zero-order and the first-order solutions (given by
(3) and (10), respectively) versus the exact solution for w;.
Note the bias between the zero-order and the first-order secular
terms (which is responsible for the frequency shift between
Fig. 2 and Fig. 3). We mention at this point, although not
demonstrated here, that the solution also remains valid for spin-
down maneuvers, as long as the initial conditions w,(0) and
w,(0) are small and as long as the spin rate w; does not pass
through zero. These observations are in agreement with the
previous results of Tsiotras and Longuski (1991a).

6 Conclusions

Analytic solutions are derived for the angular velocity of a
nonsymmetric spinning body subject to external torques about
three axes. The solution is developed as a first-order correction

Journal of Applied Mechanics

to previously reported solutions for a near-symmetric rigid
body. The near-symmetric solution provides accurate results
even when the asymmetry is large, provided the initial condition
for the transverse angular velocity is near zero. The problem of
the asymmetry becomes apparent when the initial transverse
angular velocities are not small. It is shown that the first-order
solution for the angular velocity takes a simple form and is very
accurate, at least for the cases when the effect of the transverse
torques is not too large compared with the effect of the initial
conditions. The formulation of the problem therefore allows for
nonzero initial conditions in the transverse angular velocities,
in conjunction with large asymmetries. Finally, an explicit for-
mula for the bound of the error of the approximate solution is
derived and a numerical example demonstrates the accuracy of
the proposed analytic solution.
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in accord with the experimental observations. Other bifurcations may occur at higher
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1 Introduction

The vibration of granular materials is of interest for a number
of reasons. First, vibration is sometimes used instead of an
upward flow of gas to fluidize a particle bed reactor and in such
devices it is clearly important to know the state of the bed.
Secondly, vibration is often used to induce flow in recalcitrant
bulk flow transport devices such as hoppers and chutes. It is
also used to induce segregation of different density and different
size particles. Clearly, knowledge of how vibration affects these
granular materials provides important design information. As a
third incentive we note that there has been a growing recognition
of and interest in the granular state. In a recent review, Jaeger
and Nagel (1992) have summarized some of the important
issues, questions, and applications of knowledge of the granular
state and highlight the need for understanding the response to
vibration. The analogy to molecular dynamics is often drawn
but an important difference is that the particles in a granular
material are inelastic and therefore only sustain random motions
when either (a) the material is flowing (more specifically, un-
dergoing continuous deformation) in which case the random
motions are produced by the collisions or (b) externally im-
posed vibrations generate particle motions. Consequently, re-
search on the flow of granular materials and on the vibrational
excitation of granular material would seem complementary and
knowledge gained from one should provide insights to the other,

Several investigators have previously examined the response
of a bed of particles subjected to vertical vibrations and identi-
fied a number of states and transitions between those states.
Observations have been made for fine powders in which the
interstitial fluid plays an important role in the response (see,
for example Gutman, 1976a, 1976b) and for larger particles
(typically > 0.1 mm diameter) in which the effects of the
interstitial fluid are small. In this paper we shall focus on the
latter case because, even in the absence of the interstitial fluid
effects, phenomena occur which have yet to be adequately ex-
plained. The important variables are the radian frequency of
vibration, §2, vibration amplitude, 4, particle diameter, d, and
bed height at rest, g, as well as material properties such as the
coefficient of restitution, €,, for collisions between the individ-
ual particles and the base plate. Clearly two appropriate dimen-
sionless parameters which will influence the state of the material
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are the dimensionless acceleration amplitude, I' = aQ*/g,
where g is the acceleration due to gravity, and the number of
layers in the bed, hy/d.

Most investigators agree that within the range of frequencies
usually explored (5 = 100 Hz) the phenomena are relatively
independent of frequency but depend strongly on the accelera-
tion level, ', and the bed thickness, h,/d. We describe the
phenomena which have been reported to occur as I' is increased
from zero. As long as I < 1, the visual appearance of the bed
changes little; however Chlenov and Mikhailov (1965, 1972)
report an increase in mobility and this manifests itself as a
decrease in the angle of repose (Rajchenbach and Evesque,
1988). When I'" exceeds unity by a small amount, the bulk of
the particles separate from the base plate each cycle of oscilla-
tion when the downward acceleration exceeds 1g. We note,
parenthetically, that one of the effects of the resistance to air
flow in fine powders is to delay the inception of separation to
values of T" greater than unity (Thomas et al., 1989), For the
larger particles (typically > 0.1 mm diameter), when T" is just
a little larger than unity the flight time of the particles, Ar (the
time between separation and subsequent recontact), is short
compared with the period, T = 27/, of the oscillations. In
these circumstances the material essentially comes to rest rela-
tive to the plate prior to the next flight.

A number of phenomena are observed to occur when the
acceleration level, I, is increased to higher levels so that the
flight time, Az, approaches the period, T. It is clear that the
events depend upon the layer thickness, hy/d. Douady, Fauve,
and Laroche (1989) examined fairly thick layers with hy/d in
the 10 — 100 range and observed that when the flight time
becomes slightly greater than the period, a period doubling
bifurcation occurred, This resulted in two different flights which
alternated to produce a 2§2 component in the motion. The critical
" at which this occurred increased from 4.5 for hy/d = 7 to
5.3 for ho/d = 25.

Thomas et al. (1989) examined much thinner layers including
very dilute systems consisting of much less than a single layer
of particles. They describe four identifiable states which can
occur at large I” (typically 2.5 = 6.0) and are primarily distin-
guished by different layer thicknesses, hy/d. For very small
ho/d (of order 0.17) they describe a *‘Newtonian-I'" state in
which the particles are bouncing so randomly that the vertical
concentration profile changes little during a cycle. At somewhat
larger hy/d (at 0.273 for example) there is a transition to a
*‘Newtonian-II"" state in which a dense layer of particles accu-
mulates on the surface during one part of each cycle. Thicker
layers of particles ( for example h,/d = 1.7) lead to a ‘‘coherent-
expanded’’ state in which the particles all oscillate as a coherent
mass. This mass does, however, expand and contract during
each cycle. Bachmann (1940) had earlier observed the transi-
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Table 1 Bead and lid masses for the various experiments

Experiment Bead Mass Lid Mass
No. [gm.] [gm.]
1 250 3.44
2 125 3.44
3 125 7.17
4 375 3.44
5 125 17.06
6 625 3.44
7 45 351
8 125 28.14

tion to coherent motion and reported that this occurred when
hoa" d=6.

Finally, Thomas et al. (1989) identify a ‘‘coherent-con-
densed’’ state at larger values of h,/d on the order of 4. In this
state the particles move as a mass but the mass remains compact
throughout the cycle. They report that the transition from the
“‘coherent-expanded’” state to the ‘‘coherent-condensed’’ state
is sudden and repeatable.

In the present paper we describe the phenomena which were
observed to occur as the vertical acceleration of a bed of mate-
rial is increased and identify a transition or bifurcation similar
to that which occurs with a single bouncing ball on a vertically
vibrating plate (Wood and Byrne, 1981; Holmes, 1982).

2 Experiments

Experiments were carried out to investigate the behavior of
a bed of granular material subjected to vertical vibration. The
materials used were A-285 glass beads with a mean diameter
of 2.85 mm. Various quantities of these beads were placed in
a rectangular box with cross-sectional dimensions of 11 cm by
13.2 cm which was in turn mounted on an electro-mechanical
shaker and subjected to vertical vibration at frequencies between
4 and 10 Hz with amplitudes up to about 2.5g. A Statham
AT3TC-4-350 accelerometer was used to measure the accelera-
tion level accurately.

The box had a thick aluminum base and back but the other
three sides were made of lucite so that the behavior of the beads
could be observed. Paper lids of various thickness were placed
on top of the beads leaving a clearance of about 1 mm between
the edge of the lid and the walls of the box. When the box was
vibrated vertically the bed of beads would expand and the lid
would float on the beads. Fortunately, the lid proved to be
quite stable and under all of the conditions used in the present
experiments would remain horizontal and centralized with a
roughly equal spacing all around the periphery. Because this
spacing was smaller than the diameter of the beads, all of the
beads would remain under the lid. A stroboscope was used to
examine the motion of the lid and the beads during various
parts of the oscillation cycle. By this means we were able to
observe that the spacing, h, between the base and the lid did
not vary greatly during the oscillations. The beads would bounce
around below the lid but because of the resistance to the flow
of air around the sides of the lid, the volume of beads and air
would remain almost constant during a cycle of oscillation.
Thus, using the strobe and a scale attached to the exterior of
the box, it was possible to measure the height, h, for each
operating condition.

Experiments were conducted by observing the evolution of
the bed of beads as the vibration amplitude, @, was increased
from zero to the maximum of which the shaker was capable.
Such experiments were conducted over a range of frequencies
(4 = 10 Hz) for various quantities of beads and for lids with
different weights as listed in Table 1.
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It should be noted that a single packed layer of beads resting
on the base of the box would weigh approximately 62 gm.
Consequently the masses of beads range from less than a single
layer to about ten layers. The 45 gm of experiment 7 was close
to the minimum at which the lid would remain horizontal for
the duration of the experiment.

3 Experimental Results

The results for the base-to-lid spacing, k, as a function of
vibration amplitude will be presented in various ways but we
focus here on the expansion of the bed, h* = h — hy, where
hq is the spacing at rest. For reasons which will become clear,
h* will be presented both as a function of the non-dimensional
acceleration amplitude I = af2*/g where g is the acceleration
due to gravity, and as a function of the vibration velocity, af2.
The typical behavior of the bed is best illustrated by the results
from experiment 7 which are presented in Fig. 1.

The bed would begin to expand at an acceleration amplitude
of about 1g and this expansion would gradually increase until
one reached a certain critical value of the acceleration ampli-
tude, I'., which appeared to be independent of frequency but
to vary with both the mass of beads and the mass of the lid.
At this critical acceleration amplitude the lid would rise quite
abruptly and then settle down at a substantially larger spacing,
h. As illustrated in Fig. |, further increase in the acceleration
would result in further bed expansion but this was more gradual
than the expansion encountered during transition. The top graph
in Fig. | illustrates the fact that the critical conditions appear
to occur at a given acceleration amplitude regardless of the
frequency. On the other hand, the bottom graph in Fig. 1 illus-
trates the fact that the supercritical conditions correlate with the
velocity amplitude, af?, rather than the acceleration amplitude.

Using the strobe, one could observe that prior to the transition
the motions of the particles were fairly uncoordinated. However,
above the transition the beads began to move as a mass which
collided once per cycle with the base and with the lid. The
collision with the base seemed quite inelastic and it appeared

15 T T T T T
+
= » [n]
13 o
a
=2 Ba
v 101 Dn& -
= oao
Z- Oo -
o o
] »
E 5 =
o
% 15
VoR
P 1 4 wdy %) ] ]
0.0 0.5 1.0 1.5 2.0 2.5 3

15 T T = 1
7 xa
3 o
2]
3 A
Tiof R e
= 0
- oo
=
o
7]
5 5 -
E +
o
0 AR X+
x
o L% b ax ] L
0.0 0.2 0.4 0.6 0.8 1.0

VELOCITY AMPLITUDE, aQ (m/s)

Fig.1 The dependence of the bed expansion, h — h,, on the acceleration
amplitude, I' = af?*/g, and the velocity amplitude, af2 (in m/s), for experi-
ment 7. Various frequencies as follows: + =4 Hz, x =45Hz, 0 =5
Hz, & = 55Hz, O = 6 Hz, and * = 7 Hz.
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Fig.2 Data from experiments 4 (top) and 5 (bottom) with frequency key
as in Fig. 1

that the mass only left the base again when the acceleration of
the base exceeded some critical value. However, it is also im-
portant to emphasize that the mass expands and contracts sub-
stantially during each cycle being quite concentrated while it is
in contact with the base but quite dilute while it is in flight.

Experiment 7 was chosen to illustrate the transition because
it does so most clearly. This is because it used the smallest
mass of beads. As the mass of beads was increased (for the
same lid weight) the critical transition became less distinct in
the sense that the expansion at the critical acceleration became
somewhat less abrupt and somewhat smaller. The same trend
was manifest as one increased the weight of the lid. Both effects
are illustrated in Fig., 2 which presents data from experiments
4 and 5.

The critical acceleration, I';, also increases with both the
mass of the beads and the mass of the lid. These trends are
shown in Fig. 3.

In order to understand the fundamental dynamics behind the
above phenomena it is valuable to present the data non-dimen-
sionally. This accomplished by nondimensionalizing the expan-
sion as (h — ho)$2%/g and plotting this versus the nondimen-
sional acceleration amplitude, I = af2*/g. Examples from ex-
periments 2 and 3 are shown in Fig. 4 in which the subcritical
and supercritical data clearly form two distinct groups of points.
Indeed the two groups of points both appear to lie close to
quadratic curves which imply that each group of points corre-
spond to a roughly constant value of the inverse Froude number,

_ [g(h — k)]
a) ’

To examine this further, the inverse Froude number is plotted
versus the acceleration, I', in Fig. 5 for the typical data of
experiments 2 and 3.

It seems particularly noteworthy that the subcritical data cor-
responds roughly to an inverse Froude number, Fr ', of between
0.5 and 1.0 and that the supercritical corresponds quite closely
to Fr~' = 1.5 (recall that the values of (A — h,) and a for some
of the subcritical data are quite small and this may account for
the larger scatter in that group of points), The specific values

Fr! (1)
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lid (bottom graph for 125 gm of beads)

for Fr~' decrease significantly as the mass of beads increases
and as the mass of the lid is increased. The subcritical data
shows similar trends though they are less distinct due to greater
scatter in the data.

4 Theoretical Analyses

The analytical solutions to the problem of a ball bouncing
on a horizontal flat plate performing vertical oscillations (ampli-
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tude, a, and radian frequency, 1) are of interest for several
reasons. First, the model could be considered appropriate for
individual particles when particle/particle collisions are rela-
tively rare, as, for example, in the case where less than a single
layer of particles was used. Alternatively, in the case of a larger
mass of particles, the solution might be considered applicable
to the whole mass when it performs a coherent periodic motion.
In either case, we shall consider that the particles bounce off a
lid which, by some unspecified damping mechanism, is main-
tained at a constant height above the oscillating plate. The lid
is, however, entirely supported in the mean by the impulses
imparted by the particles; thus solutions will be sought for
various ratios of the lid mass to the particle mass, f. The problem
also requires specification of the coefficients of restitution, ¢,
and ¢, for collisions with the plate and lid, respectively.

The dynamics of the ball bouncing problem without a lid
have now become a classic example of the occurence of bifurca-
tions ( see, for example, Wood and Byrne, 1981; Holmes, 1982)
and we shall see that this seems the probable explanation for
the experimentally observed transition.

The first, simple solution which is useful is that for no lid
and for €, = 0, The ball remains in contact with the plate until
the latter is accelerating downward at an acceleration equal to
£. The maximum height, h,, to which the ball rises above the
plate can readily be identified parametrically as

h*
8

(2)

= T[(x; — x;) cos x, + sin x, — sin x;]

where
(3)

This relationship between the dimensionless ‘‘expansion,”
h2?*/ g and the acceleration amplitude was obtained numerically
and is identified in Fig. 6 as the ‘‘no bounce’’ solution. Note
that it corresponds quite closely with the subcritical experimen-
tal data (in Fig. 6 we have used the data of experiment 2 as
typical).

When one examines the specifics of this solution for the range
of T values of interest here (less than about 2) one finds that

sinx; = 1/T; x, — x; = ['(cos x, — cos x,).

Journal of Applied Mechanics

after becoming airborne the particle (or particle mass) will
return to impact the plate after less than about 0.6 of a cycle.
Even if ¢, were nonzero and there were several small bounces
following this impact there is more than sufficient time left in
the cycle for the particle (or particle mass) to effectively come
to rest on the plate before the next occurrence of a downward
acceleration of 1g. Thus the solution is valid for a range of ¢,.

The second benchmark which is of interest here is the peri-
odic solution in which the particle (or particle mass) bounces
off the plate and off the lid once per cycle of plate oscillation.
In order for such a periodic solution to exist the relative velocity
of departure from the lid collision, u,, the relative velocity of
incidence on the plate, u, (both u, and u, considered positive
downward), the relative velocity of departure from the plate,
12, and the relative velocity of incidence on the lid, u;, (#; and
1y considered positive upward ) must be given by

wfd  2x(l +f) BQ_Q=21rq,(l + f)

g (l+¢) g (1+¢)
LAY s ____Zﬁf : i‘_‘g = __2"'TE"f (4)
8 (l+e)’ g (1+e¢)

The solution is most readily obtained parametrically by select-
ing the times t, and #, during a cycle when collision with the
plate and the lid, respectively, occur. It then follows that

[ - rzn[@ + “-‘Q]
g g
+ [t + 1) + 27] [Eﬂ + i‘i@]
g g

r.:

5

2m(cos 2, + cos ) )
and that the expansion, /, defined as the increase in the spacing
between the plate and the lid is given by

h
— = sin Qﬁ — sin sz
a

" Q06— 1)

u
5 [_u_z + —= + cos 4, + cos Qrz] . (6)

all  al}

Thus the choice of two arbitrary values of ¢, and {2z, corre-
sponds to a solution for specific values of fand I" and yields
a specific value for h/q. In addition one must check to ensure
that there are no unforeseen overlaps between the particle and
the lid or plate during the oscillation cycle. Typical results for
this analysis are included in Fig. 6 (identified as ‘‘with bounce’’
solution) for €, = 0.25, ¢, = 0, and f= 0.01, 0.1, and 0.2. Note
that for a given lid and given coefficients of restitution there
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Fig. 8 Typical data (from experiment 2) compared with the analytical
solutions described in the text
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exist no periodic solutions of this type for accelerations below
a certain critical level.

It should be noted in passing that there is a large variety of
other possible periodic solutions. For example there exist the
possibilities of one bounce for every two or more plate cycles
and of two or more bounces in a single plate cycle. Alternatively
the ball might cycle through two or more types of bounce before
repeating itself. It is important to point out that studies of the
dynamics of the much simpler system of a single particle on a
vibrating plate (Wood and Byrne, 1981 and Holmes, 1982)
have revealed a system of bifurcations at different critical values
of the acceleration, T".

As the acceleration amplitude is increased the dynamics of
the single ball exhibits the first bifurcation from the ‘‘no
bounce’” solution to the ‘‘with bounce’ state at

_w(l =€)
T (l+e)

The present experimental data clearly indicates that such a bifur-
cation also occurs with the granular mass. Though the analogy
may only be of qualitative value, it is nevertheless of interest
to observe that Eq. 7 yields I'. = 1.88 when ¢, = 0.25, a value
we have arbitrarily chosen to demonstrate the results of the
analytical calculation. This analysis is qualitatively consistent
with the current experimental data since the effective ¢, for the
mass of particles may be as low as 0.25.

Thus the analysis is consistent with the following explanation
of the observed experimental behavior. At small values of the
acceleration just above 1g, the data is consistent with the sim-
ple, no-bounce solution. However, when the acceleration ap-
proaches the critical or bifurcation value of I, a sudden expan-
sion of the bed occurs as the particle mass begins to move as
a fairly coherent whole, bouncing off the plate once each oscilla-
tion cycle.

A computer simulation was developed in order to determine
if a column of inelastic particles vibrating on an oscillating
plate and bouncing off one another would behave in a manner
similar to a single particle. A hard sphere model was used
to simulate a column of up to ten particles with zero radius,
constrained to move vertically, supported by a sinusoidally vi-
brating.plate. The separation height, &, between the top particle
and the oscillating plate was averaged over many cycles for
values of the parameter I" between 1.0 and 5.0. It was found
that a series of *‘jumps’’ in the bed expansion existed for combi-
nations of N, the number of particles, and ¢, the coefficient of
restitution between particles and between the bottom particle
and the plate. Figure 7 presents the results of a typical simulation
where the dimensionless expansion AQ2%/g, is plotted against
the acceleration amplitude a(2*/g. For cases where N was small
and € was large, the effective coefficient of restitution of the
column of particles is nonzero and sudden increases in the
column expansion occurred. However, when N was large and
€ was small, the effective restitution coefficient was zero and
the column of particles remained grouped together, In this re-
gime the characteristic sudden expansion was not observed for
the range of acceleration amplitudes examined.

Clément et al. (1993) found similar results both experimen-
tally and numerically for a column of spherical particles vibrat-
ing on a sinusoidally oscillating base. They plotted the separa-
tion height of the center of mass of a column of ten particles
vibrating on a sinusoidally oscillating base as a function of
acceleration amplitude and also found sudden jumps at particu-
lar values of I'. They, however, did not discuss the cause of
these jumps. Clément et al. also describe regimes where parti-
cles cluster together and move as a coherent mass. Here the
column of particles behaves in a manner similar to a single
particle with a coefficient of restitution equal to zero. Clearly the
same phenomena are being observed in the present simulations.

As a last note, it is interesting to consider the possible role
of the present bifurcations in the onset of the heaping phenome-

(7N
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Fig.7 Results from the computer simulation of a column of ten particles
with zero radius. In the simulation, e = 0.90, and the separation height,
h¥?/g was averaged over 400 oscillations.

non (and its convection pattern) observed in the experiments
of Evesque and Rajchenbach (1989), Laroche et al. (1989),
and others. Since the bifurcations observed here occur at nearly
the same value of I as the onset value for heaping (I'y = 1.2)
it is worth considering how the two phenomena might be re-
lated. The authors suggest that the two are in fact not related.
The sudden bed expansion which occurs for the shallow beds
examined here are due to a bifurcation in the dynamics of a
bed that has an effective restitution coefficient which is greater
than zero, e,; > 0. Heaping, however, is observed for deeper
beds where €. = 0 and the first bifurcation occurs when I' =
3.3. Furthermore, when ¢, = 0, the bed does not exhibit the
sudden expansion described in this paper but instead displays
a period doubling bifurcation.

5 Conclusions

A bed of granular material which is subjected to vertical
vibration will exhibit at least one sudden expansion at a critical
acceleration amplitude. This sudden expansion corresponds to
a bifurcation similar to that exhibited by a single ball bouncing
on a vibrating plate. Theoretical analysis based on this model
yields results which are in accord with the experimental obser-
vations. Other bifurcations may occur at higher vibration levels.
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A Comparison Between the
Tiersten Model and O(H)
Boundary Conditions for Elastic
Surface Waves Guided

by Thin Layers

In this paper we make a comparison between the boundary conditions ( BCs ) derived
by Tiersten and the so-called O(h) BCs for elastic surface waves guided by thin
films. By a thin layer we here mean a layer for which the thickness is much smaller
than the wavelengths involved. The advantage of the O(h ) model is that it starts with
the general three-dimensional equation of motion and derives the boundary conditions
in a rational manner keeping all terms linear in the layer thickness. The Tiersten
model is obtained from the approximate equations for low frequency and flexure of
thin plates by neglecting the flexural stiffness. We consider straight-crested surface
waves under plane-strain conditions, so-called Rayleigh-type waves (P-SV), and
Love waves (SH). It is shown that for the Rayleigh type waves the O(h) BCs gives
a much better approximation of the exact case than the Tiersten BCs. Even for the
Tiersten model including flexural stiffness, the O(h) BCs yields more accurate results.
Concerning Love waves both the Tiersten model and O(h) model reduces to the

P. Bovik

Division of Mechanics,
Chalmers University of Technology,
S-412 96 Géteborg, Sweden

same dispersion relation which quite well approximates the exact solution.

Introduction

It is well known that thin layers of finite width coated on an
isotropic half-space can be used to guide elastic surface waves
in the substrate. The first one to study this problem seems to
be Bromwich (1899) who considered long waves. For a half-
space of incompressible materials, the work was extended by
Love (1911), who considered short wavelengths compared to
the thickness of the layer. Over the past decades there has been
a renewed interest in the problem of effective modeling thin
layers for application in wave propagation problems. Important
technical applications are flaw detection and nondestructive test-
ing of components which, due to manufacturing or surface con-
ditioning, have been covered with thin films of different materi-
als. Other areas where effective modeling of thin layers are
important include signal processing and microwave theory
where surface acoustic waves (SAW) and so-called SAW-filters
are of great interest. Also in piezoelectric media, in which a
deformation produces an electric field, thus giving rise to a
coupling of mechanical and electric phenomena, we find im-
portant technical applications of electromechanical surface
waves, Parker and Maugin (1988).

Probably the most commonly used approach to model thin
elastic layers is the so-called “‘spring contact model.’”” This
model employs boundary conditions which are linear and relate
the discontinuity of the displacement to the surface traction,
With this model it is also possible to model, not only the open
and closed crack, but also perfectly lubricated cracks and par-
tially closed cracks (Wickham and Bostréom, 1991).
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In some recent investigations of scattering properties of thin
interface layers surrounding certain elastic inclusions, Olsson
et al. (1990) and Bostrém et al. (1992) showed that the spring
contact boundary conditions are in fact inadequate to describe
the scattering from a thin elastic layer. Regarding quantities
like the scattering cross sections of coated elastic inclusions,
the use of spring contact boundary conditions, in some situations
lead to a prediction of a decrease in the scattering cross section
when in fact both exact solutions (when available) and a more
careful approximate analysis predict an increase. There is also
one rather obvious and somewhat absurd consequence of the
spring contact boundary conditions: They predict a scattering
from the layer itself even when the layer is of the same material
as the matrix.

In Bovik and Olsson (1992) effective boundary conditions
for SH waves were derived for almost arbitrarily curved elastic
isotropic layers imbedded in a different elastic isotropic mate-
rial. These boundary conditions are exact up to and including
the first order in the layer thickness. The method was extended
in Bovik (1994 ) to cover the full three-dimensional vector case
and with more material configurations though the configuration
in this paper were not included. In a paper by Tiersten (1969),
elastic surface waves guided by thin films are considered by
using the approximate equations of low frequency extension
and flexure of thin plates. These approximate equations enable
the effect of the plating to be treated as a boundary condition
at the surface of the substrate. The model by Tiersten have
been widely used in many different contexts concerning wave
propagation in thin layers, and in this paper we will numerically
compare the dispersion relations for the two models which will
be referred to as the O(/) boundary conditions and the approxi-
mate model by Tiersten.

In Section 1 we review the solution of elastic surface waves
guided by a thin elastic layer coated on a semi-infinite elastic
half-space of a different material. In Section 2 we review the
model derived by Tiersten and derive the dispersion relation
for Rayleigh-type waves and in Section 3 we use the perturba-
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tion method to obtain the O(/4) boundary conditions and derive
a similar dispersion relation, In Section 4 we show that both
the Tiersten model and the O (k) model give identical dispersion
relations for Love waves in a layer on a semi infinite half-
space. This results corrects an error in Wickham (1992) where
different dispersion curves were obtained for the two models.
Finally in Section 5 we give some numerical results showing
comparisons between the different models.

1 Preliminary Considerations

In this section we briefly review the solution of elastic surface
waves guided by a thin coating bonded to its surface, the coating
being of a different material than the substrate. The Lamé pa-
rameters in the half-space are A\, and p, respectively, and the
density is denoted by p. The corresponding parameters in the
coating are denoted by \', p’ and p’ (see Fig. 1).

The elastodynamic equation of motion for a linear isotropic
elastic material (without any body forces) can be written in
terms of the displacement field as

pigj; + (N + @i = pli;. (n

The stress tensor is given by

uj = k[Ae~*2 + Be**> — B'Ee #*: + [’ Fe®'tn]e <"
uj = ik’ Ae "2 — o’ Be™*2 + Ee #*2 4 Fef'Ma]ehtxien
wy =0 (5)
for —2h' < x, < 0, and where
(a')?=1-rid")q’
(B8 =1-riq’

h = CJ’(C.:

d:

cllch.

Equations (4) and (5) inserted into (2) gives the stress com-
ponents, which together with the boundary conditions (3) yields
six linear algebraic equations in A, B, C, D, E, F. Nontrivial
solutions are given by the vanishing of the determinant of the
coefficients. This 6 X 6 determinant can be reduced to a 4 X
4 determinant, so the dispersion relation can be written as (here

Ty = Nty 1Oy + plug; + ui:). (2) we adopt the same notation as in Tiersten (1969))
—(2a'8, + ato,) (2a'B, + ta,) o'(20, —10.)  (2a'8'0, — toy)
(. +2af'0) —(BB. +26'0,) (2a'B'o,— 1) B'Qo. =) | _ o (4
a2 — r,t) (rat — 2+ ¢%) a'rriq? 0 =
(rut =2 + ¢%) B2 — 1) B'ruriq’
The traction vector on surfaces with a normal vector pointing  where
in the x,-direction is given by the components 7;.
Let us now consider the problem of Rayleigh-type surface 8, = sinh (a'y) 6. = cosh (a'y)
waves propagating along a plated surface and confined to the
V_icinity of the surface of tl}e gubstratc shown in Fig. 1. Equa- o, = sinh (B'y) o, = cosh (8"y)
tions (1) and (2) are valid in the half-space and the same
equations but with the material parameters primed are valid e T T
within the coating. The boundary conditions for a surface wave R g
e y = 2h'. (7)

=0 at x = —-2h'

u; =u; and 735 =74 at x; =0
u—0 as x;— . (3)
A general solution to this problem is given by
u; = k[ Ce % — BDe Prn]eHtxie
Uy = ik[aCe™ “*2 — De P*a]e™ti="
u; =0 (4)

valid for x, > 0, where a® = 1 — (c/c,)* = | — (clc,)?
X (cle))* =1 —d*q*, B*=1— g*, and

2%

x":. Xy

Fig. 1 A thin layer of thickness 2h' over a semi-infinite half-space

Journal of Applied Mechanics

This is the exact dispersion relation which governs the propaga-
tion of all Rayleigh-type waves in a coated isotropic semi-
infinite solid. When the coating is very thin compared with the
wavelengths involved it is possible to derive an approximation
to this exact theory, and in the next two sections we briefly
review a model derived by Tiersten, and a more rational ap-
proach to derive boundary conditions which are exact up to
O(h).

2 The Tiersten Model

In a paper by Tiersten (1969) the propagation of elastic
waves guided by thin films are considered by using the approxi-
mate equations for low-frequency extension and flexure of thin
plates. He shows that it is possible to treat the entire effect of
the plating as a nonzero homogeneous boundary condition at
the surface of the substrate, and by omitting also the flexural
stiffness the resulting dispersion relation becomes a polynomial
in the wave number which is much more readily informative
than the transcendental equation of the three-dimensional solu-
tion. The same technique, using higher order plate equations
that include shearing deformation and rotary inertia has been
employed by Achenbach and Keshava (1967) in a similar situa-
tion.

The two-dimensional equations governing the low-frequency
extensional motion of thin plates may be written
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F},m(l — U:Z)

—(1—u)u<°= —(1+u) bas + =
=5 (1 —vDi? (8)
and for the flexural motion we have
~D'ulusy + Fa + FY = 2p"h"i? (9)

where v’ is the Poisson’s ratio and the flexural stiffness D' and
Young's modulus E' are

4}!:3‘51
3(1 —v")
E'=2p'(1 +v").

D’ =

. In the following we will use the convention that the indices
a, b, c, d range over the numbers 1, 3 and skip 2 whereas i,
j.k,Irangeover 1,2, 3. u® = u”(x,, x5, t) are the components
of the extensional motion in the midplane of the plate. By
making the assumption that 75 = 0 and also neglecting the
shear strain components €5 = 0, we find

h'
) SR S | 10
A O e (e
ugd = —ufll. (11)
1 -p
—a 1
-2 2-qg°
2—g*+ ya —(2ﬁ+%(2—q2))

From the condition that 743% = 0, and by using (11), we also
find

..L_.ﬂ)

% = ’ 12
u&.‘ﬂ h, + 2}1' u i ( )

The applied forces and couples at the midplane of the plate and
perpendicular to the plate are given by
F” = 13(0)
F&® = h'r5,(0)
F® = 0. (13)

Inserting Eqgs. (10)-(13) into the equations of motion of the
plate, i.e., (8), (9) gives the traction components at x, = 0 as

a0 = —m'[u o+ (), s,ﬂ.:.,] Yo (14)
- v
T22(0) + A’ 72,,(0) = D'uls + 2p'R'a.  (15)

The total displacement components u; at any point in a plate
undergoing both flexural and extensional motion are given by

o 0 "3 0
uhy = ul® + xjull

up = uf® + xjusd + xi’ulh (16)
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where x3 = x, + h'. The total displacements at x, = 0, are
obtained from (16) together with (10)—(12) as

h'ul)
w=u® - h' KJRE‘I)) + 4" 2% ull),

where ' = N'/(N + 2u') =0 /(1 —v').

Equations (14) and (15) determine the approximate form
taken by the traction boundary condition at the coated surface
of the substrate with 7,;(0) given by (2). The relation between
the plating displacements «(” and the substrate displacements
u; at the surface of the substrate are given by (17). Hence, Egs.
(14), (15), and (17) yield the boundary conditions at the sur-
face of the substrate and the displacement field at the substrate
is given by (4).

The motion of the surface of the substrate does not coincide
with the motion of the centerplane of the plating, which are
given by

u, = u® —

17)

l"(l:l} = kGe-r'l'(.tl- ot}
fl}) = !kLe:k(,\l er)
u® =0, (18)

Substituting the Egs. (4) and (18) into the boundary conditions
(14), (15), and (17) yields a fourth-order system of linear
algebraic equations and the dispersion relation is obtained
through the condition of nontrivial solutions as

o -
2
L (TZK' _ .)
“ ¢ =0 (19)
—yrde'? = rig?) 0

where ¢’ = 2[(N' + ' )/(N' + 2u')]"%. Expanding the deter-
minant (19) results in a fourth-order polynomial in y. In the
following we will call Eq. (19) the dispersion relation of the
Tiersten model including flexural stiffness.

Tiersten simplifies this dispersion relation further by neglect-
ing the flexural stiffness D' and the surface couples A'T%) in
Egs. (14) and (15) while still retaining the vertical inertia and
the extensional stiffness and inertia. Moreover, in the plate dis-
placement continuity conditions (17) he neglects all O(h’) and
O(h'?) terms keeping only the lowest order terms so Equation
(17) reduces to u; = uf®. In this respect the boundary conditions
(14), (15) reduce to

(1+4+uv")

€l il + 2 " "
=) u b] p'h'i, (20)

T(0) = —2u'h’ [u»,.,,.

Tn(0) = 2p"h'i, (21)
where 75(0) are given by (2). Equations (20) and (21) are
Tiersten’s approximate boundary conditions which replace the
vanishing of the traction in the Rayleigh problem. By this we
have removed the layer and applied nonhomogeneous BCs at
the surface x, = 0. Equations (2) and (4) inserted into (20) and
(21) and the condition for a nontrivial solution gives Tiersten’s
dispersion relation as

2a + rc'* —rig?) q2—2+rﬂ(r g*—c'?)

=0. (22)
2-q*-rriqtay rariqty —2p
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Expansion of (22) gives

Ag+ Ay + Ay =0 (23)
where
Ay = (2= ¢*)* - 4B (24)
A= rg'l(rig* = ¢'))B + rig’al (25)
Ay = ririg*(c” - rig®)(1 — aB). (26)

It is noted that the equation A, = 0 is the well-known Rayleigh
dispersion equation for Rayleigh waves on a free surface.

Equation (23) is a quadratic in the dimensionless wave num-
ber y and the coefficients are functions of the dimensionless
phase velocity g. Hence, for a given real g, any real positive
root 7y gives a point on the dispersion curves, Complex and real
negative values of y are inadmissible as points on the dispersion
curves since i’ is positive and we have restricted ourselves
to real positive wavelengths. Equation (23) will be compared
numerically with the dispersion relation obtained through the
use of the O(h) boundary conditions for the layer which will
be derived in the next section.

3 The O(h) Boundary Conditions

In this section we will use a different approach in deriving
an approximation to the dispersion relation for Rayleigh-type
waves on a layered half-space. In Bovik and Olsson (1992),
boundary conditions for scattering of SH waves from a thin
elastic layer were derived by using a perturbation technique in
which the field variables were expanded in the layer thickness
in the normal direction. An extension to cover the full three-
dimensional case, and to other material combinations was given
in Bovik (1994). The advantage of this method is that it takes
into account all terms which are of the first order in the layer
thickness.

The boundary conditions at the two surfaces x, =
= —2h' in Fig. 1 can be written

0 and x,

[2 - ¢* = yarriq® + 2ay]

HJ’ [o = “j'u (27)
T51|u=?'21|o (28)
’-"5; |—2n' =0 (29)

where 74; and u; are the traction field and the displacement
field inside the layer, respectively. If we subtract Eq. (29) from
(28) and expand the field at the surface x, = —2h' around x,
= 0 inside the layer in the normal direction we find

T:a_r'lu = T;;' |n == 1'5; |—‘.‘..h‘ A 75;'10
= {7ylo + THzlo(=2h' = 0)

+ 3752 lo(=2h" — 0)* + O(h"*)}

=2h"'T%, lo — Zh'iri,-_n lo + O(R'Y). (30)
To first order in 2" we find
Tylo = 207420 + O(R'?). (31

Combining Eqgs. (1) and (2) we can separate the equations
of motion into one tangential part and one normal part as

Journal of Applied Mechanics

[2a + yr(c' - rig?) — yc'(2 - ¢¥)]

T;a,’Z = Pfﬁé - Tl;rr.b
(32)

By summing the two equations in (32) we can write the normal
derivative of the traction in terms of the tangential derivatives as

(33)

From the expression for the traction vector 73; we can write
the normal derivative of the displacement components in terms
of tangential derivatives as

r [ 1 r r ]
Uja=084j| =Tia—tsa |+
L

’ i Foxt [
T2 =P U1~ Tia

""i.-‘.z = Prﬂj' - ‘51,,'7::” - ‘52;'75”-

1

e R 34
N+ 2u s

Oyl 722 = Nujps].

Combining Eqgs. (33) and (34) and using the boundary condi-
tions (27) and (28) to replace the primed fields in the tangential
derivatives by the fields in the substrate (see Bovik and Olsson
(1992) for more information), the approximate boundary con-
dition (31) can be written (where we omit the O(h'?)-terms)
as

Taw = —2h"p' | Up e + g Ug b
(1-v")
— 20"k Taap + 2h'p'i, (35)
T = —2h" [Tl — p'l;] (36)

where ' = N/(N + 2u") =v'/(1 — ).

These equations (35) and (36) should now be compared with
Tiersten’s approximate boundary conditions (20) and (21). We
note that there are some terms missing in (20) and (21) which
are of first order in magnitude. The advantage of the perturba-
tion method is that it starts with the general three-dimensional
equation of motion and derives the boundary conditions in a
rational manner keeping all terms linear in &', For the Rayleigh-
type waves, i.e.,, Eq. (4) and the expressions for the traction
components in the substrate (2), the boundary conditions (35)
and (36) result in a dispersion relation similar to (22) as

—[2 - ¢* ~ yrB(rig® — ¢'*) — yx'28)

—0 (@
~[28 = yrrig* + 2 - ¢9)) 69

Expanding the determinant we obtain a quadratic polynomial
in y as

Pyy*+ Ay +A =0 (38)

where the coefficients A, and A, are the same as in Tiersten's
dispersion relation, i.e., (24) and (25), and P, is given by

P,=A+r (208 — 2 + g*)(c'? + rig*(x’ — 1)) (39)
where A, is given by (26).

4 Love Waves

It is well known that for ¢} < ¢ < ¢, there exist guided SH-
waves, known as Love waves which can propagate along a layer
overlaying a semi-infinite half-space. In our coordinate system
the only nonzero component of the displacement field is u;
which is independent of x;. For a layer with thickness 2h' the
exact dispersion relation is given by

Vgir? — 1tan (ylg*r2 — 1) — iﬁ— q>=0. (51)
Tu

For the approximate models it is straightforward to show that
both the Tiersten model, i.e., equations (20), (21) and the
O(h)-boundary conditions, i.e., Egs. (35), (36) reduce to iden-
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Fig. 2 Roots of dispersion relations for Rayleigh-type waves in a gold
layer over a fused silica substrate

tical boundary conditions, hence the only nonvanishing compo-
nent of the BCs for both models is

Toy = =2h' pusyy + 2k’ p'lls. (52)
With the ansatz for u; like
Uy = Pe -ﬁh‘ze:‘k(xl—c{)' (53)
we obtain the approximate dispersion relation as
1
YWe*ri-1)—=Vl-¢g*=0 (54)

Ty

which to first order agree with the exact dispersion relation.

In the paper by Wickham (1992) a comparison was made
for Love waves by comparing the dispersion relations (Fig. 4,
p. 208) for the Tiersten model (curve d), O(h)-BCs (curve ¢)
and the so-called PIE (Polarized Integral Equation) technique
(curve b). The material configuration was a copper layer over
a steel or glass substrate. There obviously are some errors in
his Fig. 4. As have just been shown both the Tiersten model
and the O(h)-BCs yield identical dispersion relations for Love
waves in layers over a semi-infinite half-space, hence the curves
¢ and d should be identical.

S5 Numerical Results

In this section we numerically compare the approximate mod-
els against the exact solution for some different material con-
figurations. We have used the same materials as those used in
Tiersten (1969). In Fig. 2, the roots of the dispersion relation for
Rayleigh-type waves (P-SV waves) are plotted for the Tiersten
model including flexural stiffness, the Tiersten model, and the
O(h) BCs against the exact solution. The first branch is the
fundamental Rayleigh-type branch and the second is the higher
M;-mode (or Sezawa-branch, see Sezawa and Kanai (1935)),
The materials are a gold layer on a fused silica substrate, hence
the material parameters are x' = 2.85 107 N/m?, X' = 15
107" N/m?, ¢{ = 1200 m/s, ¢, = 3240 m/s, p = 3.12 10"
N/m?, X = 1.61 107" N/m?, ¢, = 3764 m/s, cp = 5968 m/s. It
is seen that the O(h)-boundary conditions yield more accurate
results than both the model by Tiersten and the Tiersten model
including flexural stiffness.

In Fig. 3, where the layer is faster than the half-space, we
likewise find good agreement with the O(#) BCs and the exact
solution. The Tiersten model gives qualitative poor results. The
dispersion curve consists of two roots which becomes complex
at the maximum point. For the Tiersten’s model including flex-

166 / Vol. 63, MARCH 1996

—— — Tiersten with flexural stiffness included

g=c/cg

0.1 4+——rr—r T T
0 0.1 02 03 0.4 05 0.6

Y= 2kh'

Fig. 3 Roots of dispersion relations for Rayleigh-type waves in an alu-
minium layer over a heavy silica substrate

ural stiffness, qualitative correct results obtained though the
O(h) BCs yield better results. The materials are an aluminium
layer over a heavy silica (flint glass) substrate with material
parameters, ' = 2.5 107" N/m?, ' = 6.1 107" N/m?, ¢! =
3040 m/s, ¢, = 6420 m/s, p = 2.18 107" N/m?, A = 1.77
107" N/m?, ¢, = 2380 m/s, ¢, = 3980 m/s.

In Figs. 4, 5, and 6 we compare the roots of the exact and
approximate dispersion relations (i.e., both O (/)- and the Tiers-
ten model) for Love waves in a gold and copper layer over a
fused silica substrate and a copper layer over a stainless steel
substrate. As is seen the approximate dispersion relation gives
quite good results. Love waves only exist when the layer loads
the substrate, hence no Love wave exists for an aluminium layer
over a heavy silica substrate.

0.9 Gold layer over fused silica

0.84
0.7
0.6 S

q=c/cg

0.4

0.34
02d e Tiersten and O(h)

0.1 — exact

T T T T LI B T T T
0 01 02 03 04 05 06 07 08 09
y=2kh'

Fig. 4 Roots of dispersion relations for Love waves in a gold layer over
a fused silica substrate

0.954 Copper layer over fused silica

06d e Tiersten and O(h)
0.55 —— exact

04 05 06 07 08 08
y=2kh'

- e
0 01 02 03

Fig. 5 Roots of dispersion relations for Love waves in a copper layer
over a fused silica substrate

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



copper layer over
stainless steel

--------- Tiersten and Ofh)

—_— pxact

0 02 04 08 08 i 12
y=2kh'

Fig. 6 Roots of dispersion relations for Love waves in a copper layer
over a stainless steel substrate

7 Concluding Remarks

In this paper we have compared two different models of
approximating thin layers in elastic and acoustic wave propaga-
tion, the model by Tiersten and the O(k) BCs. Both models
actually replace the layer by a mathematical surface at the sub-
strate and specify a nonzero expression of the traction as an
equivalent boundary condition. The advantage of this is that it
clearly simplifies the mathematical treatment of wave propaga-
tion problems in thin layers. The O(k) BCs can be used for
almost arbitrarily curved layers (Bovik, 1994), and even for
anisotropic layers (Bévik and Olsson, 1991 ) whereas the model
by Tiersten only works for planar layers.

Both models yield accurate results when the layer is slower
than the substrate, though the O(h) BCs give better results. But
for layers that are faster than the substrate the Tiersten model
gives results that are not even qualitative comparable to the
exact solution.

In conclusion it can be stated that since the O(h) BCs are
far more general in nature (they work with other material con-
figurations and for curved layers as well) than the BCs by
Tiersten and give better results, they should be the more versa-
tile and useful ones.
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Rough Balanced Collisions
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In multibody systems, balanced collisions—in which the sliding velocity would not
change if friction was negligible—are a generalization of central collisions. For
them Newton's and Poisson’s rules are energetically consistent, but even though they
are applied an ‘‘all linear solution’’ does not exist if the sliding varies its direction
and does not stop. The properties of these collisions are reviewed, the hodographs

of the sliding velocity are calculated and used to develop a systematic method to
integrate the equations of motion that relies on a single integration from which the
remaining unknowns are calculated by means of algebric expressions.

1 Introduction

For smooth single-point collisions in multibody systems with
perfect constraints, the percussive rigid-body dynamics leads
always to an “‘all linear’’ solution relating the velocities at the
end of the collision to the initial ones. This is not so if friction
is considered at the collision point because, in the general case,
the friction laws for forces cannot be extended to the friction
impulses calculated over the collision interval, and Newton’s
and Poisson’s rules (with coefficient of restitution e, 0 = ¢ =
1, independent from initial conditions ) are, in general, energeti-
cally inconsistent (Batlle, 1993; Smith and Liu, 1992; Smith,
1991; Stronge, 1990, 1991a, 1991b). Consequently the equa-
tions of motion for rough collisions must be integrated over
the collision interval, (Routh, 1905; Beghin, 1951; Batlle and
Condomines, 1991). Beghin developed a geometry-based
method to solve three-dimensional rough collisions. Batlle and
Condomines (1991) extended Routh’s and Beghin’s approach
to multibody systems by means of the Lagrangian formulation.

Balanced collisions are a particular kind of single-point colli-
sions in which there is no inertial coupling between the normal
and tangential directions—and consequently the sliding veloc-
ity would not change if friction was negligible. They have been
referred to for nonplanar collisions in multibody systems by
several authors (Smith and Liu, 1992; Batlle, 1993) who have
shown the energetical consistency of Newton’s and Poisson’s
rules for them. However, this energetical consistency does not
guarantee an “‘all linear’” solution in all cases. Such a solution
does not exist when there is sliding that varies its direction and
does not stop.

In this article the properties of the balanced collisions are
reviewed and a method for integrating their equations of motion
when there is not an “‘all linear’” solution is developed. This
method requires a single analytical or numerical integration that
relates the normal velocity to one of the components of the
sliding velocity at the collision point. From the result of this
integration, the remaining unknowns are calculated by means of
algebric expressions. Two illustrative examples are presented.

2 The Lagrangian Formulation of Rough Balanced
Collisions

If the n-degrees-of-freedom of the system are described by
means of the generalized velocities {u}" = {u, 4z, ..., u,},
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the differential Lagrangian equations of motion can be written
in matrix form as

[M]{du} = {dIl,} + {dIl,} = {dIl}, (1)

where [M] is the n X n inertia matrix of the system for the
impact configuration and { dI1,} and {dI1,} are the generalized
normal and tangential differential impulses, respectively. The
n-vector {dIl} is related to differential normal and tangential
impulses dP, and dP, by means of the equation

dp,

dP, (2)

(dll} = [k]{ } = [k]{dP},

where [k] is a n X 3 matrix of coefficients relating the normal
velocity v, and the sliding velocity v, at the collision point to
the generalized velocities

Uﬂ .

IU}E{v}=[{a}lﬁﬂr{u}$[klr{u}- (3)
From (1), (2), and (3),

{du} = [M]7'[k]{dP}, (4)

{dv} = [K1"[M] '[k]{dP} = [N](dP}, (5)

where [N] is a symmetrical positive definite matrix that is con-
veniently written in the form
a h”
= [h [b]] : (6)

a™'a "M
[N] = Tag-1 Thr-1
B'Ma B'M™S
It coincides with matrix [N] used by Smith and Liu (1992).

Condition for Balanced Collisions. The lack of inertial
coupling between the normal and tangential directions requires
h = 0, and this condition reduces (5) to

dv, = adP,; or Av, = aAP, (7)
dv. = [b]dP; or Av, = [b]AP, *(8)

If Coulomb’s friction and infinite tangential stiffness are as-
sumed at the collision point, when sliding occurs dP; can be
expressed in terms of dP,, the friction coefficient 1 and the
unit vector ¢ = v,/|v,| along the sliding direction, dP; =
— podP,. Substitution into (8) and (4) leads to

dv, = —ulblodP, (9)

{du} = [M]'l[k]{ : }dP,, = {C*'}dP, (10)
- o

when there is no sliding, according to (8), dP/ = 0, and

substitution on (4) leads to
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{du} = [M]"[k]{{l]}d!’,, = (C"}dP, (11)

Equations (7)—(9) lead to interesting properties.

Autonomous Evolution of v,. Usually the evolution of v,
is linked to that of v, by means of the term h’dP, of (5) in
which dP, depends upon v, through the friction law considered.
However, for balanced collisions its evolution is autonomous
as shown by (7). The relationship dv,/dP, = a is independent
of the sliding or nonsliding conditions and keeps a constant
value over the collision interval. Consequently balanced colli-
sions verify the sufficiency condition for energetical consistency
of Newton’s and Poisson’s rules (Batlle, 1993).

The Origin of the Hodograph Plane of v, is a Sink Point.
According to (9), the projection of dv,/dP, (9) over o is
opposite to @,

a’dv, = —po’[ble < 0, (12)

because [b], defined in (6), is positive definite.

Consequently the hodographs of v, are centripetal in all their
points and the origin v, = 0 of the hodograph plane is a sink
point. Hence once the sliding has stopped it does not restart.

The Tangential Impulse P,. When there is no sliding, ac-
cording to (8), dP}* = 0 and consequently when sliding stops
the normal force at the collision point vanishes to zero. So the
tangential impulse comes only from tangential force during the
sliding, and according to (8)

P, = [b]7'Av,. (13)

In cases where the sliding stops (13) leads to P, =

—[b]7'v{®, because Av, = —v{®, being v!? the initial sliding
velocity.

Energy Dissipation. The energy dissipated by the normal
force is readily calculated from dW, = v,dP, = a 'v,dv,, where
v, = —ey, if Newton’s rule is applied. Integration over the
collision interval leads to

-1
W, = la T(v2 - p®2) = Y a il — &%),

3 (14)

The energy dissipated by friction can be analytically calcu-
lated by integrating dW, = v,dP, = v[ b] ' dv, over the collision
interval, which leads to

W,= AT, =T, - T\, (15)

where

T, = 3v([6]7'v.. (16)

According to (16), T, could be given the meaning of ‘*kinetic
energy associated with sliding.’” Equation (15) equals the re-
duction of this kinetic energy to the energy dissipated by fric-
tion,

3 The Hodographs Sliding Velocity

The set of hodographs for the sliding velocity v, give a de-
tailed picture of the evolution of v, for the collision configuration
considered and arbitrary initial conditions.

If the eigendirections of matrix [b] are taken as the axes 1
and 2 for v, on the tangential plane, (8) leads to

dU:Z b:! Uz

— = s 17
dU,| bl Upy ( )

where b, and b, are the eigenvalues of [b]. The hodograph

Journal of Applied Mechanics

(o)
vi

SN //v‘/é
A N

1

by=< by

Fig. 1 Hodograph plane for balanced collisions

equation is obtained by integration of (17) from an initial slid-

ing velocity v,

_ (0 0y by b
U = i3’ (v i)

(18)

Figure 1 depicts the hodograph plane where b, > b, (axis 1
is associated with the smaller eigenvalue of (£]). Axes | and
2—which are the eigendirections of [»] —are the only asymp-
totes in the hodograph plane. From v{” the sliding velocity
evolves towards the origin along the hodograph containing the
initial sliding velocity v{*, until the end of the collision,

The end point v{*’ depends upon the value of the initial nor-
mal approaching velocity, v, = —v{”. For increasing values of
v, the end point approaches the origin, reaching it for a certain
threshold value v5'. For greater values of v5'a phase without
sliding follows the initial sliding phase until the collision is
over,

For b, = b, the hodographs degenerate to straight lines
through the origin, (Fig. 2).

4 “‘All Linear”’ Solution

Newton's and Poisson’s rules (with coefficient of restitution
e, 0 = e = 1, independent from initial conditions) are energeti-
cally consistent for balanced collisions. If any of them is used,
an *‘all linear’” solution exists provided that an explicit expres-
sion for P, can be found.

This happens if the sliding keeps a constant direction and
does not stop (or stops just when the collision ends), as in this
case P, = —uarP,, or if the sliding stops during the collision,
regardless of its direction being constant or not, as in this case
the constraint condition v, = 0 leads to P, = —[b] 'v{®, ac-
cording to (13).

If Newton's rule is used,

Av, = +(1 + &)v, = —(1 + ep¥
=~—(1 +e){a} ('™}, (19)

where the value ‘“‘e’’ is the restitution coefficient relating the

by=bz

Fig. 2 Hodograph plane for balanced collisions with b; = b,
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normal separating velocity to the normal approaching one, at
the collision point, v, = ev,.

In the case of constant o (the hodograph is one of the asymp-
totes), as C* in (10) is constant this equation can be integrated
over the collision interval leading to

{Au} = {C}P,, (20)
but from (7),
P, =a"'Av,. (21)
Substitution of (18) and (20) into (19) leads to
{Au}) =[PH{u®}, or {u)=(U1+[PD{u?}, (22)

where [7] is the unit matrix of dimension n and

[Pl =—(1+e)a"{C}{a}". (23)
If the sliding stops during the collision, the substitution of
(13) with Av, = —v{® = —[4]"{u'?}, (19) and (21) into

(4) integrated over the collision interval leads to

{Au} =[P H{uP}; or {u@)=(11+[P'D{(uV}, (24)
with
[P']=—[MI""(a'(1 + e){a}{a})”

+ [BIb]17'[BIT). (25)

5 Non *““All Linear’’ Solution

If sliding does not stop and its direction varies there is not
n ‘‘all linear’’ solution because, even if applying Newton's

(or Poisson’s) rule, the two equations concerning P, would be
lacking. In this case the equations of motion must be (analyti-
cally or numerically) integrated over the collision interval.

If the hodograph equation is used, this integration needs to
be extended only to the calculation of v, (v, ).

From (8)

(26)

_ v
dvy = —uba™ ?ﬂ=§-duﬂ,
v + Ui

and by substitution of v,, from (18)

— — 1 4 0% 2 Ngy! = dul, (27)
P'b:
where v = b,/b, > 1 and adimensional velocities v’ = v/v{)’
are used.
Integration of {2?) leads to
II'l + Uumz l'2|v ”dU| Av:“ (28}

ru'bl

with 0 = v/{? = 1.

For practical purposes this result is better expressed by means
of the adimensional velocities §, = v,/v, and 7 = v!P/y, in
spite of workmg out the integral by means of adimensional
velocities v',

<5 f T+ v vty = &b, (29)

The integration over v,, converges better because axis 1 corre-
sponds to the smallest eigenvalue of [b].
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Fig. 3 Diametral collision of an homogeneous ellipsoid of revolution.
Notation.

If Newton’s rule is applied, the end value v;{*’ corresponds
to
AT, =1+ e. (30)

From (29) and (30) the threshold value v above which
sliding stops during the collision is given by

vE?’f V1 + v % Ngy], . (31)

=
b, (l + ¢e)
Once the end value v{§’ = v/“v{{ has been found by means

of (28) or (29), v, is obtained from the hodograph equation,
(18), the impulse { P} is obtained from (7)-(8),

P,=a'Av,=a '(1 + e)va}

32
P, = [b]"'Av, e

and substitution into (4), integrated over the collision interval,
leads to the increments of the generalized velocities:

{Au} = (1 + e)a "v,[M] "{a}

+ [M]7'(BIb] T (Av.). (33)

6 Application Example 1: Balanced Collision of an
Homogeneous Ellipsoid of Revolution With a Fixed
Surface

The bounding of an homogeneous ellipsoid of revolution with
a rough fixed surface is a balanced one provided that the colli-
sion point belongs to the equator, as it is assumed in this exam-
ple, or coincides with one of the poles, because in such cases
P, goes through the mass center, and consequently v, is un-
changed if friction is neglected. The sliding direction will
change if v{% is not directed along one of the ellipsoid axes,
and in this case there is not an ‘‘all linear’* solution if sliding
does not stop.

Let's assume the case depicted in Fig. 3 with friction coeffi-
cient u = 0.5. The degrees-of-freedom { u ) and initial velocities
{u'®} are described by

¥ (5/{2)v,
y (5/2)v,
(b= {5 ps w®=9 2 (34)
Q, 0
2 0
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Table 1 End sliding velocity #{ and #{-v{® for different
values of e

e ﬁ'HJ ﬁ}? Aby At
0 1.000 0.652 —0.768 -1.116
0.2 0.829 0.470 -0.939 —1.298
0.4 0.652 0.308 -1.116 -1.460
0.6 0.467 0.172 —1.300 —1.595
0.8 0.276 0.069 -1.491 -1.699
1.0 0.088 0.008 —1.688 -1.760

The basic matrices, vectors, and parameters are
1
1
(M] = m : ;
(2/5)r? E
ri!
!"2
0 1 0
0 0 1
Y % 0 O _ 1o o
{a} = L (8l = 0 a|? (35)
0 -r 0
0 0 0
1 12 0 7
a=—; [b]l=— 1y v=-. 36
m (b1 m [0 E] 4 (36)

According to (36), axes 1 and 2 are the eigenvectors of [b]
and axis 1 is associated with the smaller eigenvalue as assumed
in the presented integration method.

The hodograph followed by ¥, = v,/v, is defined by

e ()

3 (37)

The integration of (29) with A, = 1 + e leads to the end
sliding velocities ¥{*’, shown in Table 1 and depicted in Fig. 4
for several values of e. The incremental values A¥, in Table 1
are used to calculate the incremental values of the generalized
velocities, according to (33),

()

1.5

0.5}

Fig. 4 Evolution of the normalized sliding velocity ¥; = v,/v.

Journal of Applied Mechanics

\fixed obstacle

Fig. 5 Bounding of two articulated bodies on a rough fixed plane. Nota-
tion.

A, /2
(2/7)Ab,,
l+e
(S5/TYAD/r
—Aﬁ”er
0

{Aa} = (38)

The energy dissipated by the normal force is given by (14)

W, = ~ ymi(1 - e?), (39)
while that dissipated by friction is defined by (15)
W, = — i[53 - 37) + 3R - 3h)]. (40)

The threshold normal approdching velocity v5 above which
sliding stops during collision is, for v!’ = v{%’, and according
to (31)

UE —— P f V1 n.rzdv il

2,u,(1 + e)

1174 o
=—2"7 30 (4
Y

7 Application Example 2: Bounding of Two Artic-
ulate Bodies on a Rough Fixed Plane

The balanced collision considered in this example is no
longer a central or a colinear one. Let’s assume the mechanism
shown in Fig. 5. The mass is concentrated at points £,, P, and
P;. The articulation is free from friction. At the configuration
shown and with a translational initial movement defined by x‘®,
y'® and, a negative z\”, z'” < 0, the system collides at P, with
a rough fixed surface Wthh is horizontal at that point.

The degrees-of-freedom { u ) and initial velocities { u‘®'} are
described by .

X ?\Uo
y Avg
2 ~vo
{u} = 6 (P} =40 (42)
72 0
t; 0
@ 0
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The basic matrices, vectors, and parameters are

2
0 2
0 0 2
Ml=m| 0 —-L 0 L? :
0 0 0 o0 &§?
0 0 0 0 0 s?
L 0 0 0 0 0 L?
0 1 0
0 01
1 00
{a} 0¢; [B1=]0 0], (43)
§? 00
0 05
0 00
3 10 0
st (6] = [0 2] h {0}. (44)

The value h = 0 confirms that the collision is balanced. In
this case v = b,/b, = 2, and consequently the hodographs of
v, are parabolas

v = (PP} (45)
At the collision point, the initial velocities lead to
v, = vp; v = plD = . (46)

The particular value of v allows the analytical integration of
(29) defining the reduced normal velocity @i, = v,/v,

9, = -1 +—v}"’[\/_+ln{l +12)
— vl + /2 = 1n @, +V1 +u!D)], (47)

where v/, = v,,/v{{.

If Newton’s rule is applied, the end values of v;, correspond
to 3¢’ = . For both of them, e = 1 and ¢ = 0, the end values
v/ and their con'espondmg (049, 1%, for different values of
#{? are shown in Table 2, and depicted in Fig. 6 for u = 0.75.
From these values the incremental values of the generalized
velocities can be calculated by means of (33),

A,
Ali/2
(1+e)/3
Abp/2L
=(1 +e)2/35
Ab,»/25
—Ab, /L

where A, = —A(1 — v/{?) and A, = —X(1 — v}[9?).

(48)

8 Conclusions

Lack of inertial coupling between normal and tangential di-
rections in balanced collisions leads to direct proportionality
between normal velocity and normal impulse at the collision
point and to interesting specific properties concerning the tan-
gential impulse and the energy dissipated by friction.
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Table2 End sliding velocity v{* for e = 1, ¢ = 0 and several
values of vy = v

e 'IJ” ) A u:l{e) lel_ MJ e ﬁf—?=)\u :l(z)z
1 4ul3 0.14725 0.1963u 0.0289u
1 2u 0.46490 0.9298u 043234
1 8u/3 0.61156 1.6308u 0.9973u
0 4u/3 0.61156 0.8154p 0.4987u
0 2p 0.74930 1.4986u 1.1229u
0 8ul3 0.81494 2.1732u 177104
V2
2 p=075 Y
o e=0
o &=
2
2
Fig. 6 Evolution of the normalized sliding velocity ¢, = v./v,

The analytical expression v,»(v,;) of the hodographs of v, has
been obtained and used to develop a general and systematic
method to integrate the equations of motion when there is not

n *‘all linear”’ solution—which is the case if sliding varies its
direction and doesn’t stop—has been presented. This method is
based upon on a single integration relating the normal separating
velocity v, to one of the components of the tangential velocity
at the collision point. A convenient choice of this component
is made in order to improve the convergence of the integral.
From the result of this integration the remaining unknowns are
calculated by means of algebric expressions.
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The Effect of Water on Thermal
Stresses in Polymer Composites

The fundamentals of the thermodynamic theory of mixtures and continuum thermo-

R. M. Sullivan

Structures and Dynamics Laboratory,
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

chemistry are reviewed for a mixture of water and polymer. A specific mixture which
is mechanically elastic, where the strain states remain infinitesimal and where water
concentration gradients are possible is considered. An expression for the partial
pressure of water in the mixture is obtained from Gibbs relation based on certain

assumptions regarding the thermodynamic state of the water in the mixture. Along
with a simple diffusion equation, this partial pressure expression may be used to
simulate the thermostructural behavior of polymer composite materials due to water
in the free volumes of the polymer. These equations are applied to a specific polymer
composite material during isothermal heating conditions. The thermal stresses ob-
tained by the application of the theory are compared to measured results to verify
the accuracy of the approach.

Introduction

In their application as thermal protection barriers, polymer
composite materials are subjected to severe heating conditions.
The success of these materials as thermal protectants is contin-
gent upon a thorough understanding of the thermostructural
behavior so that sound design practices may be employed. Wa-
ter and other volatiles may be entrapped in the polymer during
curing or they may be adsorbed from the surroundings prior to
their use. Since it is common for these volatiles to be present
in the polymer, it is also essential to characterize how they
will alter the thermostructural response of polymer composite
materials.

Over the past few years, there have been many attempts to
model, in an explicit manner, the thermostructural response of
phenolic resin composites as they are heated to high tempera-
tures'. These attempts have been based on and derived from
the porous media theory, Although some have included the
effect of water on the thermomechanical response, the primary
emphasis has been to simulate the effect of thermal decomposi-
tion of the polymer on the structural behavior of the composite.
These attempts have been successful in the sense that they have
demonstrated the direct dependence of the transient thermome-
chanical response on the diffusion process. The shortcoming
with the porous media approach is the inability to accurately
relate the stresses in the polymer chains to the chemical state
of the volatile species.

The present effort approaches this problem from the perspec-
tive that the polymer and the water in its free volumes constitute
a miscible mixture. In this study, we will review the principles
of the thermodynamic theory of mixtures as discussed in the
works by deGroot (1963), Guggenheim (1933), Katchalsky
and Curran (1965), and Prigogine (1955) and apply these prin-
ciples to a specific binary mixture of polymer and water, We
restrict our attention to a mixture which is mechanically elastic,
where the deformation states are assumed to remain infinitesi-
mal and where no chemical reactions occur which would cause
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the generation or consumption of any of the chemical species.
Furthermore, only the water constituent is considered volatile.

It is well established that the mechanical response of glassy
polymers is viscoelastic at temperatures near and above the
glass transition temperature. Therefore, an accurate high tem-
perature mechanical model for the polymer should include vis-
cous terms. However, our main goal here is to establish the
contribution from water residing in the free volumes of the
polymer to the total stress expression. For simplicity sake, we
will assume that the polymer behaves as an elastic solid and
develop the total stress expression accordingly. We will leave
the task of incorporating a viscoelastic constitutive theory into
the present formulation as the subject of a future study.

Through the application of mixtures principles to this specific
problem, an expression for the partial pressure of water is devel-
oped based upon certain assumptions regarding the thermody-
namic state of water as it resides in the polymer free volumes.
This partial pressure expression is a function of the partial den-
sity of water in the mixture and the entropy of water in the
polymer. In the final section, a simple diffusion equation and
the partial pressure expression are employed to model the ther-
mal stress response of carbon phenolic composite specimens
under uniform heating conditions. The diffusion equation is
used to determine the local partial density of water in the speci-
men as a function of spatial location and temperature. From
these results, the volume average partial density in the speci-
mens is determined for each temperature. Using the volume
average partial density and the expression for the partial stress,
the volume average partial stress of water is calculated. Compar-
isons are made between the calculated thermal stresses and
measured stresses in order to exercise the theory and determine
its accuracy.

Review of Thermochemistry and Formulation of the
Theory

Description of the Mixture. Figure 1 illustrates the archi-
tecture of a reinforced polymer composite. The sketch shows
the reinforcing fiber bundles embedded in the polymeric resin,
the polymer free volumes and the polymer network crosslink
junctions®. The enlarged view illustrates the relation between
polymer free volumes and occupied volumes. The volume

? It should be noted that the polymer chains are not drawn to scale with respect
to the reinforcing fibers. The polymer chains have been exaggerated for illustrative
purposes.
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Fig. 1 Sketch showing the architecture of a polymer composite material

which the water occupies is only a fraction of the total polymer
free volume. The occupied volume fraction may be defined as
oc V“
p T (1)
where V™ is the volume occupied by water molecules and V'
is the total volume which is the sum of the volume occupied
by polymer, that which is occupied by water and that which is
unoccupied.
Treating the polymer and water in the free volumes as a
mixture, the density of this mixture p is the sum of the partial
densities of the individual constituents, namely

p=putpp (2)

where p,, and p, represent the partial density of water and poly-
mer, respectively. Since only the water constituent is volatile
and since no chemical reactions occur which would cause the
generation or consumption of either of the chemical species,
then the mass of the polymer within the mixture must remain
constant, Furthermore, since the deformation states remain in-
finitesimal, the density of the polymer p, remains constant.
Thus, the density of the mixture varies only with the partial
density of water in the mixture p,,.

The partial density of water in the mixture may be written
as

Pu =@ oW (3)

where pi' is the density of water inside the occupied volume
which we shall refer to as the occupational density of the water.
Since the mass of each water molecule remains constant, the
occupational density depends upon the volume that each water
molecule will effectively occupy. This effective volume will
depend primarily upon the forces which exist between the water
molecules and the polymer molecule since these forces restrict
the motion of the water molecules in the free volumes?,

We will assume as a primary postulate that the forces which
exist between the polymer molecules and the water molecules
are such that the occupational density of water may be approxi-
mated by the density of pure, condensed water which we denote
by p&. Equation (3) may now be rewritten as ¢* = p,/p}, and
it becomes obvious that the occupied volume fraction represents
the ratio of the density of water in the mixture to the density
of pure, condensed water. We may now think of the occupied
volume fraction as defining the mass concentration of water in
the mixture in addition to being a volume ratio.

? Other factors which may determine this volume include the space available
in the free volumes, the temperature and the forces which exist between the water
molecules themselves as they reside in the free volumes.
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Since condensed water is nearly incompressible and doesn’t
vary considerably upon heating, variations in the partial density
of water in the mixture are due only to variations in ¢“. For
homogeneous mixtures, p* is a function of the affinity for
storage of water in the polymer, the relative humidity of the
surroundings and the temperature of the system. For nonequilib-
rium or transient conditions, the occupied volume fraction is a
function of the spatial coordinates as well as the time coordinate.
The variation of the local occupied volume fraction within the
mixture is dependent upon the process of diffusion of water
molecules through the polymer.

Conservation Laws for a Binary Mixture in a Continuous
System. Let us consider a miscible mixture of polymer and
water occupying some arbitrary volume. Within this volume,
the temperature, stress and partial density of the water may be
continuous functions of the spatial coordinates X; and the time
variable r. The conservation laws which govern the variation
of the temperature, stress and partial density inside this mixture
are the conservation of energy, force equilibrium and the conser-
vation of water mass, respectively. Following the usual ap-
proach in continuum mechanics, the conservation laws are writ-
ten for the entire volume in the form of volume integrals using
Gauss’ theorem (Chung, 1988 and Fung, 1965). The local form
of these laws are then extracted from the volume integrals.

For the binary mixture of polymer and water with water
concentration and temperature gradients present, the local form
of the conservation laws are written

Conservation of Water Mass:

pw+div], =0; (4)
Force Equilibrium:
divéa = 0; " (5)
Conservation of Energy:
pii = tr (&r+&) — div J, + pr; (6)

where p,, is the local time derivative of the partial density of
water, & is the Cauchy stress tensor for the mixture, & is the
time derivative of the specific internal encrgy, € is the time
derivative of the infinitesimal strain tensor, and r is the heat
supplied per unit mass. The vectors J, and J, are the water
mass flux and heat flux vectors, respectively. In Eq. (5), body
forces have been ignored.

The local entropy balance equation is (Coleman and Gurtin,
1967; Katchalsky and Curran, 1965)
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ps+divl,=oc+ 2 (7)
.
where & is the local time derivative of the entropy of the mixture
per unit mass, J, is the entropy flux vector, ¢ is the local rate
of entropy production, and 7 is the absolute temperature.
Since we have assumed an elastic mixture, there are no irre-
versible effects due to the viscosity of the polymer; the entropy
flow and entropy production are due only to the heat and mass
flows. The entropy flow vector J, is

]‘ o, Jq *=. ,unn]n-

T (8a)

and the local entropy production rate o is given by (Katchalsky
and Curran, 1965)

o=JX, +1.-X. (8b)

In Eq. (8a), u, is the chemical potential of the water in the
mixture. The vectors Xq and X, are the forces responsible for
the heat and mass fluxes, respectively. Mathematically, they are
written X, = grad (1/7) and X,, = grad (— u../T).

Claussius-Duhem Inequality. The local form of the sec-
ond law of thermodynamics is known as the Claussius-Duhem
inequality and it states that the local rate of entropy production
for any admissible thermodynamic process must be non-nega-
tive (Coleman and Gurtin, 1967). Therefore, for the two simul-
taneous irreversible processes, there is the restriction that

jq'ﬁq + jn' 'Xn- = 0. (9)

For a continuous system where heat and mass fluxes occur
simultaneously, the simplest relation between the flux vectors
J, and J,, and their corresponding force vectors X, and X, are
the linear relations

jq = Lq\qxq + quiw ju = quiq + LWWX»' (10)

where L; is the set of arbitrary constitutive coefficients known
as the phenomenological coefficients. The Claussius-Duhem in-
equality imposes the restriction on the matrix of constitutive
coefficients L; that the determinant must be non-negative, | L;]
= (0. Furthermore, Onsager (1931) established that L; = Ly, i
# j, giving for the present case that L,,L,,, = L%,.

Isothermal Conditions. Under isothermal conditions, the
second expression in Eq. (10) reduces to

Lo
i i W d L 1
I — gradu (1)

Choosing the variables &, 7" and p,, as independent, the chemical
potential may be written as a function of these variables, namely
e = My (8, T, p,). However, if the strain tensor has a negligible
effect on the chemical potential, then, for an isothermal body,
Eq. (11) takes a form similar to Fick’s law which is

o = =D grad p,,. (12)

In (12), D is the diffusivity coefficient and is a function of
temperature,

Substituting Eq. (12) into Eq. (4), we obtain the familiar
equation for the diffusion of moisture through an isothermal
body which is nondeformable or one where the deformation
states do not affect the chemical state, This is

pw — div (D grad p,) = 0. (13)

The choice of (13) as the equation which governs the diffu-
sion of water through the polymer implies that the diffusion
process is independent of the pressure. This is not strictly so as
a general rule. However, we will show in what follows that this
simplifying assumption is sufficient for the present application.

Journal of Applied Mechanics

The partial density of water is therefore assumed to be indepen-
dent of pressure and the forces which drive the diffusion of
water are due solely to the concentration gradients which exist
within the polymer/water mixture,

A Simple Thermomechanical Model. In order to develop
an expression for the total stress at each spatial location in the
mixture, we consider the mechanical analog shown in Fig. 2
which consists of a spring in a parallel arrangement with a
piston and cylinder device. The spring represents the collective
stiffness of the polymer network as well as any additional stiff-
ness provided by reinforcing fibers. The cylinder contains a
mixture of water and the nonvolatile polymer with a mass con-
centration of water defined by p,,.

Since we have assumed a miscible mixture, the force in the
piston and the force in the spring act over the same area®. The
total stress of the mixture is therefore the sum of these forces
divided by the infinitesimal area. Mathematically, this is simply

(14)

where & is the partial stress tensor of the polymer and &" is
the partial stress tensor for the water.

In the most general sense, the partial stresses are functions
of the independent variables &, T and p,,. The differential of
the partial stress of the polymer can be expanded in terms of
these independent variables as

» 50 P
d&"={a&} dé+{a"'} dr+{a"} dp,
oe .0y ar a0, Apw Jra

(15)

where the subscripts on the brackets indicate differentiation
with those variables held constant. In the model of Fig. 2, the
force in the spring is independent of the density of water in the
cylinder when temperature and strain are held constant. Thus,
the expression for the polymer partial stress increment, Eq.
(15), reduces to

T P
d&ﬂ:{ﬁ‘f—} de + {6“ } dr.
o8 ), aT ).,

Recognizing the first term in brackets as the fourth-order stiff-
ness tensor C? and the second term as the negative product of
the stiffness tensor and the tensor of thermal expansion coeffi-
cients 87, Eq. (16) may be written

dé = € de — CPprdT.

o=+ "

(16)

a7

An Expression for the Partial Pressure of Water in the
Mixture. In arriving at Eq. (13), we assumed that the chemi-
cal state of the water in the mixture is independent of the strain
state. Similarly, we now neglect the effect of strain on the partial
stress of water. Therefore, in general terms, " = &"(T, p,).
The partial stress of water is related to the partial pressure of
water P, by &* = ~IP, where I is the identity tensor. In
view of these relations, the differential increment in the partial
pressure of the water may be written as

JdP, apP,
dpP, = dTl + { — dp,.
ar J,, 9pw )y
In order to determine the first term on the right-hand side of
Eq. (18), we will assume that processes that occur under con-

(18)

*We follow the traditional approach in solid mechanics where the Cauchy
stresses are defined as the internal forces acting over an infinitesimal area. This
area is assumed much larger than the atomic dimensions, so the forces in the
lattice network are assumed to be evenly distributed over the infinitesimal area.
Therefore, in the present case, the partial stress of the polymer is the force in the
polymer network evenly distributed over the total or bulk area of the mixture and
the partial stress of the water is the force exerted by the water in the free volumes
evenly distributed over the bulk area.
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Fig. 2 Sketch of the mechanical analog

stant composition conditions also occur under the condition
that the chemical potential of the water in the mixture remains
constant. Gibbs expression for constant composition conditions
is (Guggenheim, 1933)

d”w = deP - SwdT (19)
where V,, is the partial volume of water in the mixture and S,
is the partial entropy. Setting the differential increment in the
chemical potential equal to zero and noting that the partial
volume is the inverse of the partial density, we obtain

aP,
- = wa-
{ aT },w 4

The differential in the second term in (18) will be a function
of temperature. In order to determine its variation with tempera-
ture we invoke Maxwell’s reciprocal relation between the partial
pressure and the variables T and p,,. That is

(20)

3*P, _ 9P,

= . 21
9Top,  9pndT @n

Substituting (20) into (21), we obtain

2P o
e e, B
Tap, g, P

(22)
Integrating (22) with respect to temperature yields
T
{ %} = f $.dT + R,
apw T T

where R, relates variations in the partial pressure to variations
in the partial density at constant temperature 7,.

(23)

Substituting (20) and (23) into (18) and upon performing

the integration, we obtain

T P
P, =P+ f PuSdT + f {
T, o

where Py, is the partial pressure at temperature T, and water
concentration py,. Integrating the first integral term in (24) by
parts yields two terms one of which cancels with the second
integral in (24). Equation (24) then reduces to

T P
f S.dT }dpw + J. R,dp,
T, P

(24)

P,

,
P, =P+ p, f S,dT + f R,dp,.

T [

(25)
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Substituting the partial en.tropy of water in the mixture with
the specific entropy of pure, condensed water s,, and neglecting
the term involving R,, Eq. (25) becomes

T
P, =P, + p‘"f swdT. (26)

T

The partial entropy of water in the mixture is replaced by the
specific entropy of pure, condensed water for the same reason
that the occupational density was replaced by the density of
pure, condensed water.

Using (26), the expression for the partial stress tensor of
water is

T
o =ar—1ip, f s, dT

%

27

where &) = —1P.
Integrating Eq. (17) and combining with (27), the total stress
expression is

T T
oF=a,+ f Crde — f Crgrdr - 1p, f s, dT  (28)
2, T Ty

where @, is the initial total stress at temperature T, and strain
state €,.

Demonstration and Verification of the Theory

Test Description. We will now apply the principles and
equations which have been established in the previous section
to simulate the effect of water in the free volumes on the thermo-
mechanical response of a specific polymer composite material
under a specific set of heating conditions. The material which
is chosen for this simulation is carbon phenolic. Carbon pheno-
lic is a general class of laminated, composite materials which
are constructed with carbon fabric which has been impregnated
with a phenolic resin.

We will simulate the conditions imposed during the tests
reported in Hubbert (1989) where cylindrical specimens made
of FM5055 carbon phenolic were heated uniformily at a con-
stant rate of 5.5 °C/sec. The specimens were 1.27 cm in diame-
ter and 2.54 cm in length and were fabricated such that the
direction transverse to the fabric plane was aligned with the
axial direction of the specimen (Fig. 3). As the specimens were
heated, the stress required to maintain zero strain in the axial
direction was measured as a function of temperature. The oven
chamber in which the specimens were heated was maintained
at zero percent relative humidity.

In Fig. 4, the measured restraining stress is plotted versus
temperature. The results are shown for specimens with three
different initial moisture contents. The amount of water in the
specimens has two effects on the measured thermal stresses.
The most obvious effect is that the magnitude of the restraining
stress is proportional to the initial moisture content in the speci-

Fig. 3 Sketch of the carbon phenolic specimens and heating conditions
imposed during the tests by Hubbert (1989)
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Fig. 4 Plot of the measured restraining stresses versus temperature for three

different Initial moisture conditions

men, In addition, water is known to lower the glass transition
temperature in glassy polymers {Meares, 1965). For carbon
phenolic, this effect is illustrated in Fig. 4 where we have identi-
fied the approximate glass transition temperatures for the zero
percent and four percent moisture conditions. The glass transi-
tion temperature for the eight percent initial moisture specimen
is more difficult to identify since, in this case, the partial stress
of water becomes more significant and obscures the glass transi-
tion effect on the measured stress.

Analysis Approach. Since the specimens were heated uni-
formily, the temperature is independent of the spatial coordi-
nates. Furthermore, we will assume that the response of the
specimens is axisymmetric with symmetry about the r-z plane
and that the diffusion of water occurs only in the radial direction
(Fig. 3). The variables & and p,, are therefore independent of
f. We will also assume that these variables are independent of
zsothat & = & (r, t) and p, = p,(r, t).

The axisymmetric, one-dimensional form of Eq. (13), with
diffusion in only the radial direction, is

1 a ap.
po=L1[2(,p,2:\} g
r|or ar

where D, is the diffusivity of water in the radial direction. The
boundary and initial conditions which are imposed are

(29)

pwla,t) =0 and p.(r,0)=p,,

respectively, where @ is the radial dimension of the specimen
and p,, is the initial partial density of water in the specimen.
The initial partial density is estimated as the product of the
initial moisture content and the dry density of the composite.
In the case of carbon phenolic, we'll approximate the dry density
as 1.5 g/cc.

In Fig. 5, the diffusivity of FMS055 carbon phenolic in the
direction parallel to the fabric plane is plotted versus tempera-
ture. The hollow circles represent measurements made by
Stokes (1990). The solid line represents the diffusivity versus
temperature description which will be used for this simulation.
It was obtained by a linear fit through the measured data points.

The diffusion equation is solved numerically under the im-
posed boundary and initial conditions using the finite element
method. The Galerkin weighted residual method was used to
cast the diffusion equation into a matrix equation which is nec-
essary for the numerical solution®. Linear.one-dimensional ele-

* A detailed discussion of the method is given in Zienkiewicz (1977) and
Segerlind (1984).
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ments were used to discretize the domain of the problem and
to implement the finite element method.

Results. Figures 6(a) and 6(b) are plots of the calculated
partial density of water versus radial location at various temper-
atures obtained from the numerical solution of Eq. (29). Figure
6(a) shows the partial density for the four percent moisture
specimen and 6(5) shows the values for the eight percent mois-
ture specimen. In both cases, the partial density is initially uni-
form. As time and temperature increase, the diffusivity increases
according to the model in Fig. 5. Driven by the density gradient,
the radial diffusion of water begins to occur to a noticable extent
at temperatures above 350°C when the diffusivity has reached a
sufficient value. Diffusion continues until approximately 475°C
when, as the numerical results indicate, there is very little water
left in the specimens and therefore the density gradients at all
spatial locations approach zero.

The volume average partial density of water is given by p,
= [p, dV/V. For this specific problem, where the partial density
is only a function of time and the radial coordinate and where
the time variable is related to the temperature variable by a
constant, the volume average partial density may be written
specifically as

5o (D) = = [outr. 1y rar (30)
The volume average partial density in the specimen was calcu-
lated using Eq. (30) and the numerical results of Figs. 6. The

Ln D {In (sq. m/sec))

0 100 200 300 400 500 600

Temperature (C)

Fig.5 Plot of the molsture diffusivity versus temperature in the direction
parallel to the fabric plane
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Fig.6 Partial density of water as a function of radial location for various
temperatures

average densities are plotted for the two initial moisture condi-
tions in Fig. 7.

We may approximate the volume average partial pressure of
water in the specimen using the volume average densities of
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Fig.7 Volume average partial density of water as a function of tempera-
ture for the two initial moisture conditions
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Fig. 7 and the expression for the partial pressure given in Eq.
(26). The numerical values for s, are obtained from Keenan,
et al. (1969). The variation of s, with temperature is specified
by the path along the liquid portion of the saturation curve
(Kestin, 1966). In Fig. 8, the average partial pressure is plotted
versus temperature for the two initial moisture conditions. From
room temperature to 350°C, the partial pressure increases with
temperature since the partial density remains constant and since
the specific entropy is a positive function of the temperature.
The increase in the partial pressure with temperature is governed
by the integral term in Eq. (26). As the diffusion of water
occurs above 350°C, the partial pressure drops with the drop in
partial density and falls to zero when the partial density falls
to zero. At all temperatures, the partial pressure of water for
the eight percent initial moisture case is twice that of the four
percent initial moisture case.

The present approach may be verified by comparing the total
stress given by Eq. (28) to the total stress measured by Hubbert
for both the four percent and eight percent conditions. We may
rewrite Eq. (28) as

T
6‘=0”'+6’§'—ipwf 5,dT (31)
Ts
where
T
o" = ot + _r Crde - f Crgrdr (32)
e, i

and where &7 is the initial partial stress of the polymer. Setting
&, equal to zero, the total stress component in the axial direc-
tion, according to equation (31), is

T
O, = 0% — pwf sdTl
T,

B

(33)

where we have replaced the partial density with the volume
average partial density.

The measured restraining stress for the zero percent water
condition shown in Fig. 4 is a direct measurement of the poly-
mer partial stress component o£,. The second term on the right-
hand side of Eq. (33) is the volume average partial pressure
which has been plotted in Fig. 8 for the two moisture conditions.
Superimposing the measured restraining stress profile for the
zero percent condition with the two pressure profiles of Fig. 8,
the total stress profiles for the four percent and eight percent
moisture conditions may be determined. These are plotted in
Fig. 9 along with the measured values.

There are slight discrepancies between the calculated and the
measured total stresses near the glass transition temperature,
This results from simply superimposing the two profiles to-

80
 w
% 8% Initlal Moisture
E
B
S
g 4% Initlal Moisture
£ 20
&
01 T T — —r 1
o 100 200 a00 400 500 600

Temperature (C)

Fig.8 Volume average partial pressure of water as a function of temper-
ature for the two initial moisture conditions
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Fig. 9 Measured and calculated restraining stress in the axial direction
plotted versus temperature for the two initial moisture conditions

gether. The polymer partial stress profiles have not been ad-
justed to account for the effect of moisture content on the glass
transition behavior of the polymer. In spite of these slight dis-
crepencies, the measured and calculated total stress profiles
compare quite well for both moisture conditions.

Discussion and Conclusions

From the framework of continuum thermochemistry and the
thermodynamics of mixtures, we have developed an analytical
approach for modeling the transient thermomechanical response
of polymer composite materials which are influenced by the
presence of water in the free volumes of the polymer. An equa-
tion for the partial pressure of water has been obtained and has
been applied along with a diffusion equation to model the time
and temperature-dependent thermal stresses in carbon phenolic
composite specimens under isothermal heating conditions. The
numerical results obtained from this method compare quite well
with the measured response.

In calculating the partial pressure of water in the mixture, we
assumed that the thermodynamic state of the water in the free
volumes of the polymer could be approximated by the thermo-
dynamic state of condensed water. The fact that the numerical
results were consistent with the measured effect of water vali-
dates this assumption. This approach is in contrast to previous
analytical techniques which treat the escaping volatiles as being
in the gaseous state.

Journal of Applied Mechanics

The diffusivity model which was used for this simulation has
been extrapolated from measurements made at lower tempera-
tures. The accuracy of the diffusivity model at higher tempera-
tures cannot be fully verified in this problem since the specimens
failed before the total stress measurements could indicate when
the exodus of moisture occurs. The diffusivity model is verified,
in part, since the exodus of moisture must occur at temperatures
higher than the failure point and since the partial pressures
calculated with this diffusivity model are consistent with this
observation.
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of a Drawn Cable

The steady motions of nonlinearly elastic and inextensible strings which are being
drawn between two fixed points and are subject to a gravitational load are examined.
It is shown that, dependent on the boundary conditions, constitutive equations and a

reference drawing speed, multiple co-existant steady motions are possible in certain
situations. Using a variational method, stability criteria are also established for some

of these motions.

1 Introduction

This paper examines the steady motions of a string which is
being drawn between two fixed points. While undergoing these
motions the string is assumed to be under the influence of a
gravitational force (cf. Fig. 1(¢)). This system forms an im-
portant component of many industrial processes, in particular
in the textile industry. To accommodate as large a variety of
materials as possible, both nonlinearly elastic and inextensible
strings will be considered. For certain boundary conditions, a
reference drawing speed ¢ and the constitutive relations for
the string, the existence of multiple steady motions will be
established. These steady motions are conveniently classified
as convex and concave. The former are similar in appearance to
the classical catenary, while the latter are similar to the inverted
catenary. Nonlinear stability results are also established for cer-
tain convex steady motions.

Before presenting an outline of this paper, it is appropriate
to discuss a selection of recent work on this system. Briefly,
this work has focused primarily on an examination of the linear
stability of steady motions of elastic and inextensible strings.
It was necessary to obtain an explicit analytical expression for
the configuration of the string undergoing the steady motion of
interest. The difficulty of this endeavor has necessitated the
introduction of various simplifying assumptions. For inextensi-
ble strings under symmetric boundary conditions, Simpson
(1972, cf. Section 6 in particular) established the surprising
result that the convex steady motion is (linearly) stable for
all ¢. Perkins and Mote (1987, cf. Section 5.3 in particular)
established a similar result for a particular class of elastic cables.
In a subsequent paper, Perkins and Mote (1989) demonstrated
experimentally the existence of a concave steady motion and
the manner by which this steady motion stabilizes. O’Reilly
and Varadi (1995) examined certain qualitative features of the
steady motions for various nonlinearly elastic strings as ¢ was
varied. All of these works assume a unique convex and (where
appropriate) a unique concave steady motion. The present work
significantly extends certain aspects of these earlier works by
demonstrating a far larger variety of possible steady motions
and in some cases establishing their stability. The latter results
rely only on easily obtained estimates and not on a precise
expression for the deformed shape of the string. Our analysis
is also trivially applicable to the threadline problem—where
the gravitational force is neglected.
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The following section of this paper discuss the convenient
formulation of the equations governing the motion of the string
with respect to a suitably chosen intermediate configuration.
The various constitutive equations are also discussed there. Sec-
tion 3 discusses two functionals which are used later to establish
the stability results. The stability criteria for elastic and inexten-
sible strings are developed in Section 4 using a variational
method and rely on the conservation of the two aforementioned
functionals. The required restrictions limit the applicability of
the stability results obtained. Variants of the method we employ
may be found in the fluids literature (cf. Abarbanel, Holm,
Marsden, and Ratiu (1986) for further references) and in a
paper by Healey (1990) where it was used to investigate the
stability of rotating circular loops of string. It should be noted
that our stability criteria lack the validation of existence results
for dynamic solutions of the partial differential equations gov-
erning the motion of the string. Unfortunately, these results
appear to be currently unavailable.

A method for determining the steady motions of the string
is presented in Section 5. This section exploits an observation
dating to Routh (1882, Section 524) that the boundary value
problem for steady motions, when formulated with respect to the
variables of an appropriately chosen intermediate configuration,
correspond to the equilibrium conditions for the stationary string
under a vertical gravitational load. This allows us, after some
modifications, to use earlier work by Antman (1979) and
Dickey (1969 and 1976) on the stationary string subject to a
gravitational load. Their results, and Antman’s in particular, are
used extensively in preparation for the remaining two sections
of this paper.

In Section 6 it will be shown how to determine all the steady
motions of the string. As will become apparent, the task of
determining all of these motions is nontrivial and will not be
attempted here. Instead, results pertaining to the qualitative na-
ture of these motions will be obtained. These results show that
the nature of the deformation present in some of these steady
motions are quite distinct from those recorded in the literature.
In addition, several specific cases will be given additional con-
sideration. These include convex steady motions of sziff nonlin-
early elastic strings. It will be established for this case that such
motions are unique, exist for all ¢ and, provided symmetric
boundary conditions are considered, are always nonlinearly sta-
ble. The case of a linearly elastic string is also considered.
However, for stiff strings the stretch will become unbounded
for sufficiently large ¢ and the validity of their assumed stiffness
becomes questionable. A brief discussion of the more physically
reasonable soft string is included to address this issue. The
concluding section ( Section 7) of the paper addresses inextensi-
ble strings. For these types of strings the existence and unique-
ness result for both convex and concave steady motions is estab-
lished. After suitably restricting the boundary conditions, non-
linear stability of the convex motion is also established. It
remains to remark that the stability criteria developed here are
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(a)

(b)

E=0+a

aEj+bEy

outlet

he

Fig. 1 The configurations of the string: (a) reference, (b) intermediate,
and (c) deformed

inconclusive for all the concave steady motions. As a conse-
quence, the results developed there cannot be used to demon-
strate the stabilization of any concave steady motion.

2 Configurations and Balance Laws of the String

The string in this paper is modeled as a one-dimensional
material curve £ which is embedded in %, and whose material
points are uniquely specified by a (convected) coordinate 6.
The reference configuration of ' is assumed to be undeformed
and to occupy a straight curve (. We denote the space curve
occupied by £ in the deformed configuration by . The location
of a material point in the reference and deformed configurations
of the string are determined by the vector valued functions R
= R(#) and r = r(8, 1), respectively. In the later sections of
this paper interest is focused on steady motions of strings and
it is convenient to reformulate the boundary value problem
in terms of an intermediate configuration. We provide a rapid
summary of this configuration here and refer the reader to O’Re-
illy and Varadi (1995) for further details (cf. also Antman and
Reeken, 1987).

The motion r = r(#, t) is decomposed into two motions: r(8,
t) =ry(r,(0,1),t), where r (8, t) represents a rigid translational
motion of speed ¢ of the (undeformed) reference configuration
along the @ coordinate direction: ri(4, t) = (6 + ct)dR/d4.
The resulting configuration of [ is known as the intermediate
configuration (cf. Fig. 1). The material points of this configura-
tion are identified by the coordinate £ = # + ct. Consequently
the intermediate formulation of the motion r; is given by #,(&,
t). The steady motions of the string which are of interest in
this paper then correspond to r(6, ) = r,(£€). In the sequel the
string will be assumed to be drawn between an inlet and an
outlet. The position vectors of these two points are denoted
¥, and ¥, respectively, and the parameter = represents the
constant length of the intermediate configuration between these
two points.

The local form of the balance laws which are assumed to
hold at any point # of £ are now provided. These may be
obtained from the directed theory of rods after suitable restric-
tions have been employed (cf. Naghdi (1982) and references
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therein). The referential formulation of mass conservation for
Lis

po(8) = N(b, 1) p(8, 1), (1)
where the stretch A(6, 1) = V(dr/a0):(or/a6) and p(h, 1) is

the mass per unit length of » . This balance law is supplemented
by the referential formulations of balance of linear momentum,

dn
a—3+ﬂaf—~.00*. (2)
and balance of angular momentum,
dr
—Xn=0,
af n (3

v =F = v(#,t) is the velocity vector, f = (8, t) is the body
force per unit mass, n = n(#, t) is the (contact) force and the
superposed dot denotes material time derivative. It is convenient
at this point to record the conservation law of energy in the
form

82 i,
%J. (%V'v+£)pd&’=fzf-vpd§‘+(n'v)g;, (4)
91 81

where d¥ = \df, € = €(0, t) is the internal energy per unit mass
and the symbol (g(#, 1)) is used to denote g(6,, 1) — g(6,, t).

The constitutive relations for n are determined using standard
methods. A discussion of these methods may be found in
Naghdi (1982, Sections 10-12). For elastic strings, ¢ = A =
A(N, 8), where A is the free energy, and consequently,

[ dA ar
n=p,———

N ON A6 @)

For inextensible strings, the constraint of inextensibility (i.e.,
N(B, t) = 1) is imposed and ¢ is assumed to be 0. For this case
n is specified by the constitutive relation

n=m-_—

a6 ()

where m = m(#, t) is often identified as a Lagrange multiplier.
We note that the constitutive relations (5) or (6) identically
satisfy balance of angular momentum (3), and this balance law
is not considered further.

For future purposes the Helmholtz free energy A = A(\, 6),
is assumed to have the following functional behavior (cf. Figs.
23 ),

0A 0A —00 0
—_— =(}‘-——b 2
YRR {w} ” “{w}

and

2
>0,

7
oz (7)
and A( -, 8) € C*((0, =), &). In preparation for the discussion
of Sections 4 and 6, it is convenient to define certain classifica-
tions of the constitutive relation A(N). A string is locally stiff
if :

a2A
aN?

otherwise the string is locally soft. If (N, \y) = (0, %) then,
following Healey (1990, Defn. 4.2) and with the assistance of
(7). the string is said to be stiff, otherwise it is soft. Further
classifications of strings are possible by relaxing (7 );; however,
this is beyond the needs of the present purposes.

The intermediate formulation of the balance and conservation
laws can be obtained from their respective referential formula-
tions (1)-(4) by changing the functional dependence of the

1 3A
> KBXVN € (A1, A2),

(8)
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variables and by suitable modification of the integration limits
of (4). These transformations are greatly facilitated by noting
the equivalence of the partial derivatives, dg(8, t)/d8 = dg(¢
— c¢t, 1)/ = dg(&, 1)/0& and by the undeformed state of
the intermediate configuration. In the sequel, the intermediate
formulation will be used exclusively. For convenience the
"’s employed earlier will be dropped and #,(&, t) will be de-
noted by r(&, t). The remaining nontrivial balance law is the
intermediate formulation of the balance of linear momentum
(from (2)):

on

pa“*’:.jg
_ (&, 1) (&, 1) 62r(§,r))
—-p_.,(———-aéz ¢t +2 T ¢+ o )}

This equation is supplemented by the boundary conditions,
r(£=0,1)=%,=0,

r(é =251 =%, = ak; + bE,, (10)
the appropriate consitutive relations (5) or (6), and possibly
the constraint A = 1.

Henceforth it is assumed that p, and A are independent of 8,
and fis constant (i.e., the string is homogeneous). The steady
motions of the string of interest are of the functional form r =
r(&, t) = r(£). For these motions, (9) simplifies considerably:

p.f + gag(n — pcv) =0,

where v = v(£) = ¢(dr/d€). As remarked by Routh (1882,
Section 524), for inextensible strings the equations for the
boundary value problem (10)-(11) are identical to those for
a stationary string, provided one considers n — pg,cv as an
effective force (cf. also Love (1897, Sections 270-271), and
Lamb (1929, Section 50)). This observation has recently been
used by Healey and Papadopoulos (1990) to construct steady
axial motions of both nonlinearly elastic and inextensible strings

(11)

(@)

A
C=p,
“a
A
B )
() L=- puﬁ
ine, ¢® .-".""::_,__-
LA

Fig. 2 The dependence of the functions (a) C(A, c) and (b) L(T, ¢) for
a stiff string on c. Note that 84/8\ = C(A,c = 0).
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(a) .
"-—‘=I:‘naA
dh c=0
i S
inc. ¢?
dB'
L:'pn“'a-li
(b) \
>
| — =0
1

Fig. 3 The dependence of the functions (a) C(A, c) and (b) L(T, ¢) for
a soft string on c. Note that 8A/9k = C(A, ¢ = 0).

when f = 0. In Section 5 of this paper Routh’s observation will
also prove to be valuable.

3 Conserved Quantities

Using the energy conservation law (4), a Lagrangian £ and
its Lagrangian density £ may be defined

= =
14’:_,. fdg=f Gv'v — e+ f-r)p,dE.  (12)
]

0

With the assistance of a Legendre transformation, the corre-
sponding Hamiltonian 7 and its density % are obtained from
(12):

I = IH Jtdg = r p.(3v'V + € — frr)dE,  (13)
[H] [

where the canonical variables are (r, p = p,v). We refrain
from writing the variable p explicitly in what follows as it does
not form an essential part of the work.

The kinematical quantity " and its density I" which play a
crucial role in the subsequent analysis are defined as

r=f f‘a’.f:f v-ia—'p,,ds. (14)
0 o 0

The quantity I'/p, is related to a quantity which is known in
fluid dynamics, after Kelvin, as the flow (cf. Lamb (1932, Sec-
tion 31) and Casey and Naghdi (1991)).'

The conditions under which Jf and I" are conserved are of
interest in the next section of this paper. For elastic and inexten-
sible strings, from (4) and (13) it is follows that

(15)

—= = (nv)§.

dt

' Note added (21 Nov. 1994): After an earlier version of this paper was submit-
ted for publication, Prof. T. J. Healey informed me that he and Prof. J. H.
Maddocks had obtained a conservation law for the quantity described by (14},
However, I had not seen their work, which has since appeared in J. H. Maddocks
and D. J. Dichmann, 1994, *“‘Conservation Laws in the Dynamics of Rods,"
Journal of Elasticity, Vol. 34, pp. 83-96. The latter paper references a forthcom-
ing related paper by Healey (which | have not yet seen),
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The material derivative of I' for homogeneous elastic strings
under a constant body force is

— =p,l =V +fr+A—-—A4 ;
p(z\"" r )

dt 0 (16)

where (2, (5) and an integration by parts were used in the
calculation. The corresponding result for inextensible strings

(cf. (6) and (7)) is

L8

” (17

= (3p.vev + pfer + m(E)E.

The relations (15)—(17) provide the boundary restrictions
which are sufficient for the conservation of X and I'. We alsa
summarize them here for future reference,

(v'v)§ =0,(n-v)§ =0,

(f+r)5 =0, M0, 1) = N(E, 1). (18)
These conditions will severely restrict the steady motions whose
stability can be determined using the methods described in the
next section of this paper. Anticipating the results of Sections
6 and 7, they imply that the stability criteria can only be applied
when the inlet and outlet have the same height (i.e., b = 0).
The steady motions in this case are symmetric.

4 Stability Criteria for Elastic and Inextensible
Strings

We now address the establishment of stability criteria. In the
interests of brevity only the elastic case will be completely
discussed. The corresponding result for inextensible strings will
be presented at the end of this section, along with a brief descrip-
tion of how the result may be obtained. For elastic strings, using
(13) and (14) the following functional is defined:

B 1
Hep(r, v, ) =f p,,l:i vev 4+ A —f-r]a'g
0

B ar
22 Veo—dE—-T,), (19
”(L‘”ag & ) (19)

where u is a constant Lagrange multiplier and [, represents the
value of T" for the steady motion of interest. The following norm
is defined for the linear space (r, v):

[Ir, ¥llye = max [r(&, 1)
el

(20)

ar(é, 1)
9

+ max |lv(&, Dl
£el

where I = [0, E]. From the differentiability of A, it may be
shown using standard methods that 7 is a continuous function
of (r, v) with respect to this norm (cf. e.g., Troutman (1983,
Chapter 5)). Admissible variations of r and v will be consid-
ered, i.e,r—r + aa, v — v + ab, where (a, b) €

-

Journal of Applied Mechanics

D, b(-,

a0, =a(E, ) =b0,1=b(E, 1)=0

1)) € (C'([0, E], &), C°([0, E], &),

It should be noted that there will be additional restrictions on
the boundary values of a(£, t) which arise from the need to
preserve J¢ and I (cf. (18)). These additional restrictions play
no role in what follows and are not discussed any further.

To proceed the first Gateaux variation® of ¥ with respect
to « is calculated and evaluated at &« = 0:

ZJG 2 lek v+ f|-a
weo do lae\Xn T H

+ [v = p,-g-g-]-b podé. (22)

H
6-3!“(:5 = d .

We note that in calculating (22) a standard integration by parts
has been performed. From (22) and with the assistance of (5)
and (11), it follows after setting u = c¢ that if (r, v) corresponds
to a steady motion of the string then ¢ has an extremum (i.e.,
6Jcx = 0). The extremum (r(£), v(£), p = ¢) of T is
henceforth denoted (ry, v, ).

To establish the stability result, consider Wex(r, + a(§, ¢),
vi + b(&, 1)) = Hep(r,, v;) where (a, b) € ) and (r, v) =
(r; + a, v, + b) is a solution of the boundary value problem.
Using Taylor’s theorem, (21)-(22) and provided ||a, bl is
sufficiently small, then there exists a real number w (0 < w <
1) such that

| Hee(rs + alé, 1), v + b(&, 1)) — Tep(ry, V)]

= 5|82 Hep(r, + wa(é, 1), v, + wbh(£, 1)], (23)
where 62 ¥ is the second Géateaux variation of Hcg: _
52 Hep(r, + wa, vo + wh)
_ dz-w.cg(r, + oaa, Vg + ﬂ!b)
a da® =
= da da a 63
s/ (b_cag) ("' a) RRF T
or, da aa_ da
+ (J&)(é’E % + w 3% ag) p.dE, (24)
where
1 0A 1 1 0A
fn-;a(?w) L= (ax’ (M) — Mﬁ(k))
2 _ [ Org da ar, da
Mo (aé o= ae) (as ae) )

Assuming that the string is locally stiff, i.e., fi > 0 (cf. (8))
in _a sufficiently large neighborhood of A = A(§) =
V(3r,/ 9€) - (3r,/ 3€) VE € [0, E], then (from (23)-(25))
| Hee(rs + a(&, 1), v, + b(E, 1)) — Fee(ry, V)|

2 Qur terminology here follows Nashed ( 1966).

| an
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1 0A da_oa
(A‘a( As) = )6{ Y. padE,

(26)
for some real valued positive constant a. Tacitly assuming that
n(€) — pA(E)c? > 0, VE € [0, E], the term on the right-
hand side of (26) may be used to define a semi-norm for (a,
b) €

roie (o) (r-<3)

I 9A oF oF
+(A_a_x(“_ )a-f agp.,d-f (27)

where F = F(&, 1) = (£, 1) — 1 (§), V=V(§, 1) =v(§ 1) —
vs(£). It should be noted that this semi-norm may also be used
to define a norm for %) using some standard inequalities (cf.
Knops and Wilkes (1966, Section 4.4), for instance). We are
now in a position to state the stability criterion:

Theorem 4.1 If n(£) — p\(€)c? > 0 VE € [0, E] where
co=alflp O
ny(€) NE) a,\(?\(«f}), (28)

and the string is locally stiff in a sufficiently large neighborhood
of A = A\(£), then the steady motion (r,, v,) is nonlinearly
stable.

Proof: From the continuity of Jcg(r, v, u) with respect to
the norm |r, v||yg, it follows that given ¢ > 0, 36 > 0 such
that if ”a(Ea 0)! b(fs O)HM}; = 69 then

I“%CE(FS + a(E’ 0)9 Vs t b(E‘ 0)) - B(CE(I-E! vs)[ < €. (29)

Recalling the conservation of Jce(r, v), (6), (26)—(27), it
follows from (29) that

o 2
> lac, 1), b(& Dl

< ‘-'?fCE(rs + 3(5, f), \3 + b(gv f)) - ﬂl(:cg(rs, "s)f <€ (30)

and nonlinear stability is concluded. ¢

The method of proof used in theorem 4.1 closely followed
the work of Healey (1990). As a particular case of this theorem,
a linearly elastic string is now considered. For strings of this

type,

A()\J=§(h— 1)%, (31)
where £ > 0 and Young’s modulus E = p,E. It may be shown
using (8) and (31) that strings of this type are always stiff.
With the assistance of (5) and (31), the stability result of
theorem 4.1 when interest is restricted to linearly elastic strings
reads

Corollary 4.2: For linearly elastic strings if \,(¢) > E/(E
— ¢*) V¢ € [0, E] then the steady motion (r,, v,) is nonlinearly
stable,

We remark that ¢® = £ corresponds to a well-known resonant
instability (the translational speed ¢ equals the longitudinal
wave speed).

For inextensible strings, a stability theorem whose statement
and proof are similar to theorem 4.1 may also be established.
Among the principal differences is that the functional ¥ is
replaced by the functional

184 / Vol. 63, MARCH 1996

. xr
Tel(r, v, oy, o) = f [5 VeV — f-r]pudf
(1]

= or
T #I(J:) V'E PodE — ro)
2 [ or or
+f '—(—'—‘1)Pod€. (32)

where p; = (€, t) is an additional Lagrange multiplier. As
in the discussion following (22), 67, = 0 for a steady motion
of the string if p, = ¢ and p,u, = m;(€), where m,(£) is the
tension in the string during the steady motion.

After noting that variations of ry(£) are considered which
satisfy the linearized inextensibility constraint ((dr,/0&)-(da/
d€) = 0) it is easily shown that ¥, is quadratic in &, Conse-
quently, for inextensible strings the relation corresponding to
(26) is

[ Her(rs + A&, 1), Vs + D&, 1)) — Her(rs, Vo)l
oa
-1f o= %) (o-<%)

1
) 2.2y
PoC } 3 ﬁ ag 3
With some obvious differences, the proof of the following theo-
rem is similar to that used in obtaining theorem 4.1 and we
merely quote its statement:

+ (ms(§) — (33)

Theorem 4.3. For an inextensible string if m(&) — p,c? >
0 V¢ € [0, E], then the steady motion (r, v,) is nonlinearly
stable.

For further details on methods which are similar to those used
in establishing this result, the reader is referred to Abarbanel and
Holm (1987) and Healey (1990). We shall concern ourselves
exclusively with steady motions in the forthcoming sections
and the subscript § accompanying ry, v,, m;, n,, etc., will be
dropped.

5 Determination of the Steady Motions

To determine the steady motions of the string it is convenient
to reorganize (11) as

2 (T(e)ee)) =0 (34)

d§

where T(£) = n(€) — pA(E)c® and e,(£) is the unit tangent
vectorto» atr(€). Tis the tangential component of the effective
force we referred to earlier (following (11)). It is also conve-
nient to adapt the following form for the external body force
term p, f (due to Antman, 1979):

_9G)
3

pof +

pof = E,,

>0,

where G(£=0)=0 and ———a(;f)

(35)

G(£) € (C'([0, E]), &) and for a vertical gravitational force
G(€) = p,g€ (g = 9.81 m/s?). In the sequel, the solution of
(10), (34) and (35) with appropriate constitutive relations and
possibly subject to the constraint A = 1, is referred to as the
boundary value problem for steady motions. The present formu-
lation of the boundary value problem for steady motions permits
the results of Antman (1979) and Dickey (1969 and 1974)
analyses of the stationary string to be readily applied in order
to solve for the steady motions of the string. There will be some
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complications which are consequences of the drawing, but these
will be accommodated,

From the previous discussion, the following four restrictions
on the nature of steady motions follow from Antman’s work
by trivial extension and are provided here without proof. (I)
Any solution {r(€), n(¢§)} € {C*([0, E], #7), C'([0, E],
&)} of (10), (34)—(35) where A(£) > 0 and x(€) lies en-
tirely in the E;-E, plane. As a consequence of (1) it is conve-
nient to define the variable 9(&):

e,(§) = cos (W(£))E, + sin (¥(£))E;, (36)
and to specify T (&) as
T(E) = T(§)e(&) = T1(EYE; + T2(E)E,. 37

Integrating (34) and then using (35) —(37), the following rela-
tions are obtained (using the E,, E, and e;(£) vectors, respec-
tively),

T(£) cos (¥(&)) = Th(£) = T\(0),
T(&) sin (9(€)) = T2(§) = T2(0) + G(£),
T(&) = T1(0) cos (¥(£))

+ (T2(0) + G(&)) sin (H(£)).

The second result which follows trivially from Antman
(1979) is; (II) if there exists a point £ € [0, E] where either
T(€) or cos (¥(€)) vanish then T(&) and cos (W¥(£)) vanish,
and the string is vertical (i.e., ;(§) = E; and a = 0). For every
other solution either n(£) > p,A(€)c? or n(€) < pA(E)c?.
In the sequel the vertical solution will not be considered and
consequently the following Cartesian parameterization for the
steady motion r(¢) of the deformed space curve (' is allowed
(II):

(38)

r*E; =xand r-E; = y(x), (39)
where y(x) is a strictly convex or concave function of x. The
fourth result which follows from Antman’s work is (IV): for
convex (concave) steady motions of both elastic and inextensi-
ble strings if @ > 0, then T,(0) > 0 (<0) and y(x) is a
convex (concave) function of x. We remark that the deformed
configuration shown in Fig. 1 is an example of a convex steady
motion. Its inverted form is an example of a concave steady
motion. It should be noted that the force n(£) in a convex steady
motion is always tensile, However, the force n(£) in a concave
steady motion may be tensile, compressive or both.

The results presented in the last two paragraphs are indepen-
dent of the constitutive relations for the string. Prior to establish-
ing the method for solving the boundary value problem, it is
necessary to address further details concerning constitutive rela-
tions. The functional assumptions on the free energy A (cf.
(7)—=(8)) permits the definition of a complimentary energy
B(n) where

Mn) = po 2 (40)
on
using a Legendre transformation:®
d
B(n) = nk(n) — A(\(n)) = "'52 ~ A(N(n)). (41)
Motivated by (34), an augmented free energy is defined:
A'(N €) = AQ\) — 22, (42)

* It should be noted that if A is a convex (concave) function of A, then its dual
B defined by the Legendre transformation is a convex (concave) function of n.
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where

dA'(\, ©)

T=pP=

= C(A ). (43)

Finally, from (40)-(43) and after using another Legendre
transformation:

B(Tc)—TEE-—A(LcJ. (44)
where
_ 9B (T,c)
A= p, N = L(T, c). (45)

Representative examples of the functions C and L are shown
in Figs. 2 and 3.

We are now in a position to expand upon an observation of
Clebsch (1860), who noted that the solution r(&) of (34) for

. inextensible and linearly elastic strings may be determined using

Hamilton-Jacobi theory. We will first consider elastic strings.
Setting v = ¢(dr/0§) in (12) and using (40) —(45), it follows
that we may define a Hamiltonian system whose canonical vari-
ables are (r(£), T(£)) which is equivalent to (34):

or
T f:’cr’q'il + ,Ouf'l'

=TT, r, €)= p‘,T-af

= p,B' + pf-r,

aft _ or 9T _aT

T 2 46
oT d€ ar  9¢ (46)
We now make use of the results summarized by (36)—(38) to
reduce the three differential equations in (46), to two algebraic
equations. First, we use (46), to write

=9 ar - B
j:ﬁi (p,,T'—éE - .S‘F)d.ﬁ =0.

Then with the successive assistance of (38), (ie., T=T, +
G(OE; = T\(0)E; + T1(0)E; + G(£)E,), (46), (34) and
an integration by parts, (46), may be rewritten as two algebraic
equations

(47)

-..._a_ . E— fz ' —]
3T [(T r)§ . p.B d&] 0

For inextensible strings, algebraic equations similar to (48) may
be established by appending a constraint equation similar to
that used in defining 7 (cf. (32)) to (12) and then setting ¢
= A = constant and v = ¢(dr/d€) in (12). The resulting
equations corresponding to (48) are

(48)

a 8 o —
2o -

The final development is to define two other Hamiltonian
systems, For elastic strings this (canonical) Hamiltonian system
is defined using (48),

(49)

* = Ji*(q,p, k) = pb + ga — J.H paB' (T, (&, 7). cP)dE
i)

dg _ 631”* J‘u L(Tg (&, T)’ )(p( ) + G(€))d¢,

dr T,(& 7
ﬂ)_ 67(* L(T,(E 1), c?)
- f S G andE (50)
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L(T.e)

\

inlet

T

Fig. 4 A possible L(T, c) for a fixed value of c. Also shown are possible
convex (T > 0) and concave (T < 0) steady motions of the string.

where «k denotes the parameter set (a, b, ¢, B, G),

Tp(€, ) = g (r) + (p(1) + G(£)%,  (51)

and we have used the boundary conditions (10). We emphasize
that the equilibria (g, p) = (7, ) of the Hamiltonian system
(50) may be identified with (7',(0), 7,(0)). Consequently the
equilibria of (50) provide the solutions of (48). The corre-
sponding Hamiltonian for inextensible strings is obtained by
setting p,B' = T in (50), and L = 1 in (50),5. It remains to
note that the *‘time’” parameter 7 in both of these Hamiltonian
systems has no physical relation to the dynamics, of the string.
Once the equilibria of (50),; have been determined then
(following Antman, 1979) by using (37) with (38),, and

T5(0) + G(§)
T,(0)

T(£) and ¥(£) can be determined. Finally, r(£) may be calcu-
lated by integrating (46), and these results then specify n(¢)
(or m(£) for inextensible strings) (cf. (34)).

In the work of Antman (1979) (cf. also Dickey, 1969 and
1974) on the stationary string (¢ = 0), a system of equations
similar to (50),5 with dg/dT = dp/dT = 0 and 7 = constant
is obtained by integrating dr/dé, using (36)—(38) and finally
using (41). Our alternative development of (50),; suggested
itself to us by Antman’s (1979) use of topological degree theory
to examine the equilibria of his version of (50),;.

tan (9(§)) = ) (52)

6 Qualitative Features and Stability of the Steady
Motions for Elastic Strings

Recall that for convex steady motions of the string 7(¢) >
0 (ie., n(&) > pA(£)c?), and for concave steady motions of
the string T(£) < 0 (ie., n(£) < p,A(€)c?). In this section,
existence and uniqueness of these steady motions are examined
for nonlinearly elastic strings. Consider the relation (7, L(T,
¢)) shown in Fig. 4. It may be subdivided into a series of
branches based on the following criteria:

L aL
T,—s0, and — =0,
T aT ~

where (53); is an alternative statement of the convexity (>0)
or concavity (<0) of B'* (cf. (44)). It should be noted that

(53)

“ The nongeneric cases of (53), (i.e., ¢> = 324/d\?) are not considered here.
As may be seen from (42) strict convexity or concavity of A" does not hold and
consequently the Legendre transformation (cf. (44 ) — (45)) is degenerate for these
cases.
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(53)1 > 0 (<0) applies for convex (concave) steady motions.
Referring again to Fig. 4, a constitutive relation of this form if
it were presented as a constitutive equation for A(n) would be
dismissed as physically unreasonable. It is a consequence of
the dependence of L on ¢ that it arises.

The principal motivation for distinguishing the various inter-
vals of the relation (T, L(T, ¢)) using (53), is provided by the
following proposition:

Proposition 6.1: For convex steady motions of the string,
either dL/dT > 0 or dL/AT < O for V€ € [0, E]. A similar
result holds for concave steady motions.

Proof:  Suppose a convex steady motion exists where T(£)
€ (C*([0, E]), &). Without loss of generality, assume that for
an interval £ € [£,, £),0L/AT > 0, while for ¢ € (Z, £,],0L/
dT < 0. From continuity L(T(E), ¢?) = X. For the interval
where dL/dT > 0, (denoted branch I); X > A VA = L(T, ¢).
Similarily, for the interval where dL/dT < 0, (denoted branch
II); X < AW\ = L(T, ¢). It should be noted that 8L/9T is not
defined at L(7(€), ¢*) = \. It is evident after differentiating
(45) with respect to & (after using (38)):

O\ _ 9B’ 4G
o€ Po a17

that for continuity of 7 and consequently X, it is necessary that
sin (9(€)) = 0. From (I1) (i.e., the result following (38)) (&)
is a strict monotonically increasing function of £, which implies
that £, = 0 and &, = E. By examining (54), for various cases
the desired contradictions are obtained. For example, consider
the case where sin (9(£)) < 0 on branch I and >0 for branch
IL. For branch I, dx/d¢ < 0 implying A(£ = 0) > X, which is
the desired contradiction.

The result is similarily established for concave steady mo-
tions. ¢

The previous proposition can also be considered a conse-
quence of our tacit neglect of shock-like solutions. As a conse-
quence of Proposition 6.1, in order to examine the existence of
steady motions it suffices to construct separate Hamiltonian
dynamical systems (50) for the various intervals of the relation
(T, L(T, ¢)) using (53) and for given values of the parameter
set k. For the case shown in Fig. 4, six dynamical systems need
to be constructed (three for the convex steady motions alone).
There is also the added difficulty that the states (g, p) of the
appropriate Hamiltonian dynamical system are in some cases
bounded. In order to establish the existence of an equilibrium
on such intervals it is necessary to examine whether or not the
appropriate Hamiltonian system (50) has an equilibrium for the
given value of the parameters .

There are several interesting differences between the steady
motions of these strings and previously reported steady motions
of strings. These are reflected in the following two propositions:

— sin (19),

aT* o€ o4

Proposition 6.2: For convex steady motions of elastic
strings where B’ is convex (concave), if 9(£€) = 0, for some
€ € [0, E], then the point of minimum (maximum) \( £) occurs
when ¢ = £. Otherwise, if ¥(¢) < 0, V¢ € [0, E], then the
point of minimum (maximum) A(£) occurs when £ = E, and
if 9(£) > 0, V€ € [0, E], then the point of minimum (maxi-
mum) A(§) occurs when £ = 0,

Proof: To establish the point of minimum (maximum)
stretch N (54) is used. If at some point 9(£) = 0, for some £
€ [0, E], the first statement can be readily established by taking
the sccond partial derivative of (54) with respect to £ and then
using the convexity (concavity) of B’ and the definition of G
(cf. (35)). The remaining statements where HE) + 0, VE €
[0, E]. follow from (54) and monotonicity of #(£). ¢

A similar result can also be established for concave steady
motions:
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Proposition 6.3: For concave steady motions of elastic
strings where B is convex (concave), if 9(€) = 0 for some &
€ [0, E], then the point of maximum (minimum) A(£) occurs
when £ = €. Otherwise, if 9(£) < 0 V¢ € [0, E] then the point
of maximum (minimum) A(£) occurs when ¢ = = and if 9(&)
> 0 V¢ € [0, E] then the point of maximum (minimum) A(§)
occurs when £ = 0.

In words, Propositions 6.2-3 state that it is possible to have
a convex steady motion of a string where the maximum stretch
occurs at its lowest point. Furthermore, it is possible to have a
concave steady motion where the minimum stretch in the string
occurs at its highest point.

Dependent on the nature of the interval of (L, T') of interest,
a uniqueness result can be established without recourse to a
detailed examination of the Hamiltonian vector field. The
method of proof follows the earlier cited work of Antman and
Dickey.

Theorem 6.4: For convex (concave) steady motions of an
elastic string, if B' is convex (concave) and the Hamiltonian
system defined by (50) has an equilibrium, then it is unique.
Consequently there is a unique solution to the boundary value
problem and there are no other solutions on this particular inter-
val of (T, L(T, c)).

Proof: Standard analysis shows that for a convex (concave)
steady motion, the Hessian of 7(* with respect to (g, p) is
negative (positive) definite (i.e., J* is strictly concave (con-
vex)). Consequently the equilibrium (&, p) is unique. The re-
mainder of the result follows from the construction of 7(* and
its vector field. ¢

For intervals of (L, T) when B’ is not strictly convex (con-
cave), the definiteness of 7* for convex (concave) steady mo-
tions is questionable and necessitates an examination of the
integral terms on the right-hand sides of (50),, for each L(7, ¢)
separately. A similar situation is encountered when examining
concave equilibria of the stationary string (cf. Antman (1979,
Section 3) and Dickey (1969 and 1974 ) where they are known
as compressive solutions). After incorporating the results of
Section 5, their analyses can be used to conclude the possible
existence of multiple concave steady motions of the string. For
convex steady motions the analysis is similar and nonuniqueness
of convex steady motions are also to be expected.

There are two cases for elastic strings where results can be
established without recourse to the estimates aluded to in the
previous paragraph. The first of these is for convex steady mo-
tions and the second is for concave steady motions.

Theorem 6.5: For convex steady motions of stiff (nonlin-
early elastic) strings, A’ is a strictly convex function of \, V¢,
and \ has a unique lower bound \*:

Nep,c? = n(N¥F), (55)

which is a monotonically increasing function of ¢2. If a > 0,
then there is a unique steady solution of the boundary value
problem V¢ where n(£) > pohc? and if b = 0, then this solution
is nonlinearly stable Vc.

Proof: For convex steady motions n(\) — p,Ac® > 0 and
from the definition of a stiff string (cf. (8)) d2A/AN? > n/p,h,
consequently d2A/d\* > c?, and the strict convexity of A’
follows. This implies that n{\) — p,\c? is a strict monotonically
increasing function of A, and it is readily seen that (55) has a
unique solution \*, which is a lower bound for \ (cf. (II) and
Fig. 2). The monotonicity of A* as a function of ¢ is established
by differentiating (55):

am(\) ) O
i o OO = pA*,
( ax )P

(56)

and using the convexity of A’. For stiff strings (53), holds VA
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> M and VT > T(A\*) = 0. Uniqueness then follows from
theorem 6.4.

When b = 0, then from (35), (50); and a mean value theo-
rem, T,(0) = p,gE/2. From (52) and Proposition 6.2, the
steady motion is symmetric about £ = /2 and the boundary
restrictions placed on the use of the stability criteria are satisfied
(cf. (18)). Referring to theorem 4.1, the steady motion can be
concluded to be nonlinearly stable. 4

Apart from the case b = 0, the previous theorem implies that
even if the convex steady motion looses stability, there will be
no other additional neighboring convex steady motions of this
type present after the loss of stability.

Corollary 6.6: For convex steady motions of linearly elas-
tic strings, A’ is a strictly convex function of \, V¢* < E/p,,
and X has a unique lower bound \* = E/(E — p,c?) where E
is Young’s modulus of elasticity. If a > 0, then there is a unique
convex steady motion and furthermore if b = 0, then this steady
solution is nonlinearly stable Vc* < E/p,.

Proof: The proof follows from theorem 6.5 and corol-
lary 4.2. 4

The physical reasonableness of the results of theorem 6.5 and
corollary 6.6 should be questioned. [n particular, these results
imply that the stretch A must become unbounded for sufficiently
large ¢. Consequently the string will have an indefinite length.
To investigate this situation further it is appropriate to consider
convex steady motions of soft strings. From a result of Healey
(1990, Lemma 4.3) that all soft strings are initially (locally)
stiff for A € (1, \,), it follows that given A(\) as shown in
Fig. 3, a sufficiently small ¢ and appropriately chosen (a, b,
E, G), a convex steady motion where N(£) € (1, \;) will exist.
As ¢ increases from 0, (&) necessarily increases and the stging
will eventually become locally soft at a particular € = £ € [0,
2] (ie., from (8), (42) and (44): OL/OT(T(%)) >
L(T(€))/T(€) > 0). As c increases further, the interval of (7,
L(T, ¢)) where AN(§) € L(T,¢),T>0and (1 = L(T=0, ¢
= 0)) will diminish and eventually disappear (cf. Fig. 3). In
conclusion, the convex steady motion ceases to exist for a finite
value of ¢. If b = 0, then this steacdy motion will initially be
stable (from theorem 4.1). However, when the string described
above becomes locally soft the functional ¥ (cf. (24)) be-
comes indefinite and stability can no longer be concluded using
the methods of Section 4.

The proof of the result for concave steady motions is similar
to the latter part of the theorem 6.5. A particular interval of (T,
L(T, ¢)) which corresponds to that which is about to be de-
scribed may be seen in Fig. 3. Such an interval will not arise
in stiff strings.

Theorem 6.7: For concave steady motions of stiff strings,
if B’ is a strictly convex function of A, Ve > ¢,, VA > A¥*(c),
and g > 0, then there is a unique steady solution of the boundary
value problem V¢ > ¢, where n(£) < p,Ac’.

It remains to note that for the stability criteria developed
here, the functional ¥ looses definiteness for all concave
steady motions. This indefiniteness holds even when the heuris-
tic criterion for stabilization of the concave steady motions,
n(€)(=n(§) -ei(§)) > 0, applies.

7 Qualitative Features and Stability of the Steady
Motions for Inextensible Strings

Before establishing existence and uniqueness results for inex-
tensible strings, the following well known restriction on the
boundary parameters (a, b) is noted. For any solutions of (9)
and (10) of an inextensible string, (@, b) must satisfy the in-
equality,

a’+ b < B2 (57)

For inextensible strings it is possible to explicitly calculate the
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equations describing the Hamiltonian vector field (50) which
are valid for both T, = O:

d 1 =
Ao — g+ (o + p.gE) —Vg* + p?l,
dr Pol

d

a_ _, ., ld

dr Pog

P+ pgE + Vg + (p + p,gE)*
p+Vg* +p?

X log [ ] , (58)

where G(£) = p,g& was used in evaluating the integrals.

For given values of @ and b which satisfy (57), numerical
simulations of (58) show that this system has two equilibria
(g, p1) and (§, p2), where g, > 0 and §; < 0 (cf. Fig. 5).
From the earlier discussion in Section 5, the former corre-
sponds to a convex steady motion and the latter to a concave
steady motion. These equilibrium values also provide
(T:(0), T2(0)). To establish the existence of these equilibria
is not convenient to use (58) directly. Instead the Hamilto-
nian J(* shall be used, for the two cases of T,, > 0 and <O0.
Using (50),, with p,B = T as the string is inextensible, it
can be shown that for 7, > 0, 7* is a strictly concave
function of (¢, p) and for T,, < 0 it is strictly convex. Fur-
thermore it can be shown that © > b — dJ(*/dp > 0 and
> a — dJ*/dq > —=. For the particular case b = 0, then
the steady motion satisfies the boundary restrictions required
to use the stability theorem established in Section 4. Refer-
ring there to theorem 4.3, the convex steady motion will be
nonlinearly stable for all ¢. This last statement is in
agreement with a related result of Simpson (1972). However
the tension in the string m(£) will necessarily become un-
bounded as c is increased indefinitely. In summary:

Theorem 7.1: For an inextensible string if a? + b < E?
and a > 0, then there is a unique convex steady motion for all
¢ where T(¢) > 0 (ie, m(§) > p,c?). Similarily there is a
unique concave steady motion where T(£) > 0 (i.e.,, m(£) <
po.c?). If, in addition, b = 0, then the convex motion is nonlin-
early stable for all c.

The uniqueness results of theorem 7.1 may also be obtained
by deriving a second-order differential equation for y(x) using
Eq. (52).° The solution of this differential equation is identical
to the classical catenary solution which satisfies the boundary
condition y(x = 0) = 0:

_ TJ(O) ,0»8 e
y(x) = v [Cosh (___T.(O) (x x‘))

_ _Po8
Cosh (T|(0) r)] , (59)

where T,(0) = £(m(0) — p,c?) cos (¥(0)), £ is specified
by the remaining boundary condition y(x = a) = b, and
T,(0) is as yet unknown. Provided the boundary parameters
(a, b) satisfy (57), the existence of a unique 7',(0) > 0 (i.e.,
a convex steady motion) and a unique T,(0) < 0 (i.e., a
concave steady motion) can be readily shown by using the
integral of d§/dx with respect to x. The solution y(x) is in
agreement with the observation of Routh (1882, Section 524 )
and the calculation of Love (1897, Section 270). It also
agrees with those of Perkins and Mote (1989, Eqgs. (7)—(8))
and Simpson (1972, Eq. (14)) upon taking the appropriate
limits of their results.

* For elastic strings a differential equation for y(x) may also be obtained. The
reader is referred to Antman (1979) from which it may be readily derived after
some suitable modifications.
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Fig. 5 Phase portraits of the dynamical system (58) (p.g = 1., 2 = 1.,
a = 0.8, b = 0.2). The equilibria « (= (., B,) = (.3552, .3764)) and + (= (.,
P:) = (.3562, -.3764)) correspond to the convex and concave motions,
respectively. For other values of the parameters which satisfy (57) the
phase portraits are qualitatively similar.
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Some Phenomena of Cracks
Perpendicular to an Interface
Between Dissimilar

J. C. Sung . H
e | Orthotropic Materials
J. Y. Liou The problem of two aligned orthotropic materials bonded perfectly along the interface

with cracks embedded in either one or both of the materials while their directions
being perpendicular to the interface is considered. A system of singular integral
equations for general anisotropic materials is derived. Employing four effective mate-
rial parameters proposed by Krenk and introducing four generalized Dundurs’ con-
stants, the kernel functions appearing in the integrals are converted into real forms
for the present problem which are keys to the present study. The kernel functions for
isotropic dissimilar materials can be deduced from the present results directly, no
any limiting process is needed. These kernel functions are then employed to investigate
the singular behaviors for stresses at the point on the interface. Characteristic equa-
tion which determines the power of singularity for stresses is given in real forms for
the case of cracks that are going through the interface. Studies of the characteristic
equation reveal that the singular nature for the stresses could vanish for some material
combinations and the singular nature for the stresses is found to be independent of
the replacement of the material parameter A by A ~'. The kernel functions developed
are further used to explore analytically some interesting phenomena for the stress
intensity factors, which are discussed in detail in the present context. Some numerical
results for the stress intensity factors for a typical dissimilar materials are also given.
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Y. Y. Lin
Graduate Student.
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1 Introduction

The problems of a crack or cracks near an interface between
dissimilar materials have long interest in fracture mechanics. A
considerable progress has been made for isotropic materials
(Cook and Erdogan, 1972; Erdogan and Biricikoglu, 1973; Er-
dogan, 1972; Hutchinson et al., 1987; etc.). As to anisotropic
materials, the problem of a crack with arbitrary size and orienta-
tion near the interface has been considered by Miller (1989) in
which the stress intensity factors are computed numerically for
mismatch materials. For the problem of two aligned orthotropic
materials with a semi-infinite crack perpendicular to the inter-
face has been investigated recently by Gupta et al. (1992).
The importance of such an analysis in predicting the overall
performance of a composite material has also been addressed
in Gupta et al. (1992).

In this paper, the problem of two aligned orthotropic materials
bonded perfectly along the interface with cracks embedded in
either one or both of the materials while their directions being
perpendicular to the interface is considered. A system of singu-
lar integral equations is derived by means of distribution of
dislocations along the crack faces, wherein the fundamental
solution of point dislocation acting in a general anisotropic
bimaterials, obtained by Ting (1992) and Suo (1990), is used.
By introducing four generalized Dundurs’ constants and em-
ploying four effective material parameters proposed by Krenk
(1979), the kernel functions, originally in complex forms, are
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then converted into real forms that are useful for the present
study. These kernel functions can be reduced directly to those
for isotropic bimaterials so long as the actual material parame-
ters corresponding to the isotropic bimaterials are substituted
in, contrast to the common analysis of orthotropic materials
from which the isotropic results usually can not be deduced
directly. The kernel functions can also be reduced to those for
a half-plane solid with traction-free boundary, which has been
studied by the present authors (Sung and Liou, 1994) for more
general material alignments, by letting one of the materials
being very soft. The kernel functions are then used to investigate
the singular behaviors at the point on the interface for the case
when crack is through the interface. The characteristic equation
which determines the power of singularity for stresses is given
in real forms and the singular nature for the stresses is found
to be independent of the replacement of the material parameter
A by A~'. Furthermore, there exists some material composi-
tions such that the stresses at the point of interface would be
finite. Analysis of this type of singularities for isotropic bimate-
rial problems has been given, e.g., by Erdogan and Biricikoglu
(1973), their characteristic equations can be recovered from
the present analysis. It is noted that analysis of the singular
behaviors for the problem of one of the crack’s tip terminating
at the interface has been given by Sung and Liou (1994 ). Their
results are for more general material alignments and some fea-
tures about the singular behaviors for the stresses have been
discussed in detail in that paper. Interested readers please refer
to that paper (Sung and Liou, 1994). The kernel functions
developed are further employed to investigate the behaviors of
the stress intensity factors for cracks subjected to self-equilibrat-
ing loadings. Many interesting phenomena, which will be dis-
cussed in the present context, can be observed directly from
the explicit expressions for the kernel functions, Finally, some
numerical results for the problem of a cracked isotropic material
jointed perfectly to a crack-free orthotropic material are given.
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Fig. 1 Geometry of the problem

2 Singular Integral Equations

The problem considered here is shown in Fig. 1. Two aligned
orthotropic materials are bonded perfectly along the interface
while cracks may exist in either one or both of the materials,
their directions being perpendicular to the interface. The faces
of cracks are subjected to self-equilibrating loadings. It is known
that the above problem can be formulated by distributing dislo-
cation densities on the crack faces. By summing up the tractions
induced by these dislocation densities, and then enforcing, on
the crack faces, the satisfactions of the tractions induced by
these dislocation densities, one leads to a system of singular
integral equations from which the unknown dislocation densities
can be determined. Although the singular integral equations
can be derived for general anisotropic bimaterial problems, the
kernel functions involve certain complex vector functions
multiplied by matrices whose elements are determined by solv-
ing a sextic eigenvalue problem. Due to this fact, the results
will be usually in complex form which are difficult to interpret.
We will see in this section that for the present problem under
consideration, by introducing four new generalized Dundurs’
constants and by using the effective material constants proposed
by Krenk (1979), the derived singular integral equations turn
out to be in a real form from which many interesting phenomena
can be observed.

To formulate the singular integral equations, the basic solu-
tion due to a point dislocation b acting in a crack-free bimaterial
problem has to be determined. This solution has been considered
by Ting (1992) and Suo (1990). Results are valid for any
two general anisotropic materials and are expressed in complex
forms due to the fact that is mentioned above. For further details,
please refer to the paper, e.g., by Ting (1992) (or Eshelby et
al., 1953; Stroh, 1958). The result of Ting’s (1992) is given
by

¢ = 2 Re(B@f(z)) (1

where ¢ is the stress function and function f(z) is given in
Appendix A (only those items that are relevant to the present
discussions are list). Superscript « in Eq. (1) is 1 (or 2) when
point dislocation is acting at material #1 (or #2). Besides, super-
script @ with parenthesis in matrix B and in what follows will
denote quantity that is associated with material o (a = I, 2).
Matrix B in Eq. (1) is defined by

B® = R‘“’TA“" + T@A (@)pte) (2)
where A = [a{*, @] and P'® = diag(p{*’, p5’) are formed
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by the eigenvectors af*’, k = 1, 2 and eigenvalues p{*’, with
Im{p{®} > 0, k = 1, 2, respectively. The pair (p\*’, ai®’), k
= 1, 2 satisfied the following eigenvalue problem:

[ CiY + pi"C pl(Cly’ + c%zJ)]

,Z aia} it 0,
PECE + CR)  CQ + piiCsy

(k=1,2) (3)

where C{, (n, I = 1, 2 or 6) are the elastic moduli which
relates the stress components to the strain components by

(257} cip C 0 ] €n
Onf = C‘lczﬂ ng} 0 €2 (4)
o2 0 0 C | | 26
The matrices R and T in (2) are defined by
0 ]
R =
[ng, 0 | (5)
and
c® 0
T(u:) = . 6
[ 0 cg ©

respectively. In Eq. (1), zx = x, + pi®x,, (k = 1, 2). The
traction at any point on a plane curve whose unit outward nor-
mal vector is n can be computed from the stress function by

= 9%

tﬂ
ds

7N

where s is the arc length measured along the curve. Positive
direction of n is on the left-hand side when one faces the direc-
tion of increasing s while the material is located on the right-
hand side. With the known stress function given by Eq. (1) and
the tractions evaluated by Eq. (7), one can follow the proce-
dures described above to obtain the following system of singular
integral equations:

__l L b“}(f) Jﬂ'l u .
2 “.,,I Y . K'"(& b (0t

f2
+f K*%(¢, r}b‘”(r)dr} =t(8), hh=Es1,
by

iy p(2) A
. dr+f K2(¢, Db (t)dt
w I — E hiz

-1 {
2
I'I
+ j K (¢, f)b“’(f)df} =68, h=E&=hL (8)
Iy
with auxiliary conditions

1) |'2
BO(dr =0, | BP(H)dr =0

U hy

9

which have to be satisfied for single displacements around a
closed contour surrounding each crack, In the above equation,
t, is the traction applied on the crack faces. b'*(1) (@ = 1, 2)
is defined by

BV(t)y=LWb(t), h=t=]
bP(1) = —~L®by(1),

hh=t=10h (10)
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while b,(¢) and b,(t) are dislocation densities each defined on
different crack faces. L'*? is the matrix defined by (Ting, 1986)

L® = —2B@B@’ (11)

which is real, symmetric, and positive definite (Chadwick and
Smith, 1977), i = J-_l . The kernel functions in Eq. (8) are

given by
2 2 m—
K'"(& 1) = —X X Re{Fi/(& NE{"M"E")
k=1 j=1
2 2
K¢ 1) =3 ¥ Re{FI(¢ t)E{PMEP)
kel jml
2 2 i
K?(& 1) = =X X Re(FF (& NEPMPE® )
ka] jm=i

2 2
K& 1) = X X Re(F{(& NEPMYE["}  (12)

k=1 j=1
where E{® = B@LB@ ', I, = diag (1, 0), I, = diag (0, 1)
and
1)
PO TR ./ S
Y P - g
(1)
Fi2 = Pk
I
(2}
y s e | S
Y pPe - PPt
2)
il =B 13
YT pPE + piot , €3
Matrices M*(a, 8 = 1, 2) in Eq. (12) are given by
M'=H"'G, M?=-H"'G,
M? =1+M", M"=1+M2
(Iis a2 X 2 unit matrix). (14)
where H and G are expressed as
H=(GAVB" ") + (APB®™ (15)
and
G = (AVBMT) — GADBD™), (16)

B@ =

Sw(f]w(_a)

respectively. Here we have to mention that matrices
(GAMBM™) and (IAPB@ ") are both positive definite Her-
mitian, hence matrix H will have this property too and its in-
verse will exist, For later reference, matrices H and G are further
written in the following form:

H=D+ W (17)
and

G=U+iW (18)
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El«) —[6‘"“(&;5_"] + w(_a})]uzeiwm
(), ,(a) (a)g,  (e) (@)1 —1/2 , —ir/4
Bwiw | [6"N(w§ + w9 %

E{ﬂ] [aiﬂ](w(_a) _ l'wﬂr“])]”ze""”
[6‘ l:ﬂ'](w(__lt) P iw‘f’)] —I-‘Ze!wM

where
D =Re{H) =(L"" +L®)
W = Im{H} = (-S"’L™"" + §PL®™)
U=Re(G}=L"" - L@ (19)

and $ = i(2AB@" — 1) is a real matrix (Ting, 1986).

The kernel functions shown in Eq. (12) will now be rewritten
in real forms that are more suitable for further investigations.
To this end, first let’s introduce the following four generalized
Dundurs’ constants as follows:

_=Uy. _=Uy
al L L] 2 = *
Dll D22
"WIZ _Wl’l
= 5 = 20
B D, B, Dn, (20)

where D, and U,, (no sum) are the diagonal components of
the matrices D and U, respectively. W, is the element of first
row and second column of W. Next, instead of expressing the
kernel functions in terms of the elastic moduli C%’, (n, [ = 1,
2 or 6), we will employ four effective parameters proposed by
Krenk (1979), the usefulness of this adoption will be seen in
the following. These parameters are related to the elastic moduli
by

(a)? pla) (e} pia)
Cce = ' E cw =Y E
1 | _ V(a)i ' 12 1 — y(a)5 1
E(a} E(a)

CH =, C¥ = (21)

61 — v @) 2(k @ + @)

where E® is the plane strain effective stiffness, v is the
effective Poisson ratio, 6 is the stiffness ratio and x ’ is the
shear parameter. The positive definiteness of the strain energy
density requires that

k> ~1, §>0, E“>0 (22)
Note that for isotropic material, § = k= 1 and E'®, p @
are reduced to E{/(1 — »{*") and v{*/(1 — v{*), respec-
tively, where E{* is the Young’s modulus and »{* is the Pois-
son ratio for isotropic material. Note also that the parameters
« ) and & ‘) are similar to those p and \ defined by Suo (1990).
With the Krenk’s parameters, the matrices B, L, § and
the eigenvalues p'® take the following forms (Sung and Liou,
1994; Dongye and Ting, 1989):

Iu(a)! < l,

[6@ (W@ — ylary]12g-inss
i - (a)
(), (@) _ | (ay]-12 i |0 KT 1
[6“N(ws” — wi*)] 72

(23)
_la{ul(w(_a} + fw(::])]u:!einm .
(6w + iy g |+ 1K1 <1
Lo B o 0]
2wi®| 0 §=7]°
o _1—=—v®@[ 0 —g§@
S”=“"—*2wa“? [6(‘” . ] (24)
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and

i
(e
@ [ gt W@ wu«)] y k>
E{® = | A =5NED, (30b)
w[d‘} ( ] 6!«1
| 20@ [ 6“” - m] , k@< It has been observed by the present authors (Sung and Liou,
b L 1994) that the degenerate materials occur when k ¢ = | since
. - the eigenvalues p{* and p{ are the same. In the degenerate
w - w —i6 s 1 case the matrix B’ will be singular. Note also that matrices
Qw‘“} —ig@™ ey @ | B L®, D™ and U are independent of v, It is interest-
E{ = ing at this stage to consider the isotropic bimaterial problems,
W 4 i gt i.e., consider both orthotropic materials being reduced to (differ-
—& [ i - (a]] . k™| <1 ent) isotropic materials. In this case, k") = k@ =1, §" =
2] W = iw §® =1 so that
(25) D = 2(EV" + E®T)
i 6 (W + W), kW >1
Pt = 4 :
: E@O(w® — w®), k™| <1 U=2(E"" - E27HL
iS5, @), (e) (@)
pi = ARG ws > (26) With these results, one can easily verify that four generalized
% iw® + w'*), |k <1 Dundurs’ constants defined in Eq. (20) are reduced to
where @ =a; = ap = a, =pf=p=p (3D
wi =1 + /2, w@ =Vl -2, 27

Matrices D, U, and W defined in Eq. (19) can also be expressed

in terms of Krenk’s parameters. The results are

o
|

W- [-—(1 — yMED”

2w D(EBEMED) + 2P (§PED)!
0

2w (S MEM)=! — 2§D p@y-!
0

0
+(1 -

u(Z])ElZ}

where o and # are Dundurs’ constants (1968). Matrices M*?
shown in Eq. (14) can be written in forms that completely
depend on four generalized Dundurs’ constants, i.e.,

]
|

—_ L UnyptnnTt _ @y !
(1 —v")E (1 —v®HE
0

0
2¢.."+”5“’E(”_' + 2w(316(2)E[2)

0
. -1 |
2{“,(+I)é(1]EHI - Zw(+2)6{2)h(2}

] . (28)

Substitute the components of the matrices U and W into Eq. MY = 1 —ay + BB, ifi(1 — ) ]
(20), one obtains L — BB | —iBa(l —ay) —az + B, |
5 _(l+a) -0 -an)A™’
Tt ap) + (1 - ag)A! )
M = 1 1 + o i (1 + ay)
az__:(l"‘ﬂn)_(] = ag)A 1 — B8.18; | =iB(1 + «ay) 1+
2B -
ar = lrzl(l + ap) + (1 — a)A™! M:!:::——l [ @ + bbbl + ar)
1 =86, LiB(1 + 1)  ar+ BB,
Ry 28,
= §12 29
Pz (1 +a) + (1 — ag)A (29
] |l —a —if (1 — )
where M# = [ . (32
1 - 1,62 tﬁz I - ¢I|:| | — 2 ( ]
w?® L —p@ 1 —,Wm
E® EOD E® ED
¥ === o Bo= = 3 (30a) Substitution from Egs. (23)-(26) and Eq. (32) to Eq. (12),
Wi g 2% gf e W one leads to the kernel functions which are expressed in real
E# g ! i forms:
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4 1 [af? + coft + eat? 0 ]
Cdn(g ) | 0 CEE? + cXet + cFp
K = 1 [ il + cs€2t + bt + oot}
dip(€. 1) | 0 Crfj'*f-',skfzf
” 1 [ cef? + coft + cyot? 0 ]
Cdn(& 1) | 0 e + clet +
K2 — 1 [ cu€® + €’ + el + cia’
d2](§t t) 1l 0

where the coefficients appearing in the diagonal terms are
i N3
N3 — (40" = DN}

e =—

cy = -N
e = 2w"Nji —

¥ = 2wPNI — NI — (4w’ — 1)NY

. 11 1 1 * _ 11 1 11
C3-—'N21_2w(+)N12 Ca —N“ _‘2(JJ(+]N|2
— N2 * 12
C4""N“ Cq —sz

¢s = (4w PwPNE - ANE - 20PN A

1, ,(2)
oWy

NB + 200 ANE - ATNB A
WPAPANGAT
cd = QNG + 20PAT'NE + (4wP’ — 1HNE)A?

o= (N3 - 20'NDHA™?

cf = (4w

cs = (4w®" = DNY — 2w PNE —

cf = (ANE + wPNDA™

c¥

Cg = “‘Nﬁ =
¢ = WwPNE ~ NE — (40 ~ DN
- Nii - (4w®" - 1)NE

2 2) A722 * 22 2) A722
cip = Nz — 2itt-"'(Jf”Vu cw = Nii — 2w )Nz;z

22
- _NZZ

* _ 2) A2
c; = 2w 21

B ar2l
cii = Ny

AT'NG -

cn = Nii
¢ = (dwVwP N — 2wPNIDHA
ez = (4wPwPNG + 2P AN — ANIHA
e = (4w’ = DN = wPN3 - 20V AN A?
e = QWPNE + 2wV ANH + (40" - 1)NB)A?
cu = (N3 - 20PNH)A?
cli = (AN} + 20N A’
and d,4(€, 1) (a, § = 1, 2) are given by
(& 1) = (€ + D(E + (4w’ - 2)¢r + 1%)
dip(€, 1) =& + 4w PwP A
+ (4w + 40@* — 2) A2
+ 4w P w P ATE + AT
dn(&, 1) = (£ + (€ + (4P’ — )& + %)
du(€ 1) = €' + 4wiPwP Arg?

(34)
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CHEY + chEx + cher + ek

0
+ceer? + et

]

0
] (33)

+ (4w + 4w - 2) A%
+ 4w VWP ANE + A (35)

In Egs. (34) and (35), A and Ni¥ (o, B, k, j = 1, 2) are
defined by

[N:: N:;] __ 1 [-e+BB A —ﬂfz)]
Nii Nu| 1-BB:[ 60 -a) —a+fif
(36a)
[NI% NE]_ 1 l+a, Bl +ay)]
N} N3] 1-586160+a) 1 + ay
(36b)
[Nﬁ NEl__ 1 [a+Bb Bl + )]
N3 N3] 1-86 |60 +a) o+ bb ]
(36¢)
[N%: NEl 1 [ 1-ar Al —ay)]
N} Nﬂ_ Ji BIB‘; Wﬁz(l — @) I —a
(36d)
ﬁl = _6{”_':6“ ﬁz = _'5{”;62,

ﬁ: = 5(2)4;61, Bz = 5mﬁz-

Note that the kernel functions for many special cases can be
obtained from the above results. For example, the kernel func-
tions for the problem of a half-plane solid (say, only material
#2 exits) with traction-free boundary can be obtained by letting
the material parameter E‘" of material #1 being small (i.e., E‘"
< E™®), The results are found to be the same as those obtained
by the present authors (Sung and Liou, 1994). Another example
is the problem of a half-plane solid (say, material #2) with
clamped conditions. For this case the matrix given by Eq. (36¢)
will take the following simple form:

NE VB
NE NB

!

if the condition of E® < E" is enforced. With this results,
one can obtain the kernel function K* for clamped problem

1
] = 4w‘f’2 =] — ym)z

40P + (1 — v@)?
4wP(1 — v ™)

4wP(1 — v ?)

4(“',(1_2)z + (] — U(Z)}z] (37J
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which shows that it is independent of §® and E‘® and its
diagonal terms are exactly the same. There are still more special
cases, e.g., when one of the orthotropic materials becomes de-
generate (say, material #1 is degenerate, k"’ = 1), or when
both of materials are degenerate (i.e., k"’ = 1 and k@ = 1),
etc. No matter how the special case is, the corresponding kernel
functions can be obtained directly from the general expressions
shown above, no special considerations are needed. This is
contrast to the common analysis of orthotropic materials which
usually requires limiting processes to obtain isotropic results.
One final remark to be mentioned is that the kernel functions
developed by Erdogan and Biricikoglu (1973), who considered
the isotropic bimaterial problems, can be obtained from the
present results.

3 Singular Behaviors at the Point on the Interface

When cracks go through the interface or one of the cracks
terminates at the interface, the singular behavior near the inter-
face is different from that for a crack in a homogeneous medium,
which is the well-known square root singular for stresses. Ac-
cording to the analysis of Zwiers et al. (1982), only one singu-
larity of the type r *(0 < -y < 1) will occur near the interface
for cracks through the interface for the present problem under
consideration. For the case of a crack terminating at the interface
the stresses will exhibit two different singular behaviors, i.e.,
r " and r "2 (7, and vy, > 0) for in-plane problem. The more
general case of two anisotropic elastic media which accounts
for the effect of the anti-plane deformation has been investigated
by Ting and Hoang (1984). Their results show that the stresses
will in general have three different powers of singularity. The
analysis done by Zwiers, et al. (1982) and Ting and Hoang
(1984) employs essentially the techniques of eigenfunction
expansions around the crack tip. A characteristic equation is set
up by which the powers of singularity can be determined. Great
effort and care for locating the roots are usually needed (Ting
and Hoang, 1984 ) due to the fact that the characteristic equation
involved is complicated. For the present problem we will de-
velop the characteristic equation directly from the singular equa-
tions by considering the singular behavior of the equations at
the points near the interface for the case when crack is going
through the interface. The obtained characteristic equation is
given in a real form and can be reduced to those for isotropic
media. Furthermore, we found that the singular behaviors for
stresses may vanish for some material combinations for cracks
going through the interface. The problem of a crack-tip termi-
nating at the interface has been investigated by Sung and Liou
(1994). In that paper, the two powers 7y, and -y, stated above
can be identified to which mode is associated with, which can
not be told from the results given by Ting and Hoang (1984).
There are more features for the singular behavior of stresses
discussed in that paper. Interested readers please refer to that
paper (Sung and Liou, 1994). In the following, we will discuss
only the case for cracks through the interface:

Following Muskhelishvili (1953) and Erdogan and Birici-
koglu (1973), the unknown functions in equation (8) may be
expressed as

5(01(1)

b{a)(t) = W o

O0<Re(y)<1l, a=12 (38)
near the irregular points (ie., t = l,, a = 1, 2 and t = 0).
Square root singular has been assumed at points, t = [,, & =
1, 2 in the above equation. With the results of Eq. (38), the
terms with the Cauchy singularity in Eq. (8) may be expressed
as

1 J"«b“"(r) P i ()

mdo £—§ JE

cot (wy)§ 7,
O<é<l, a=1,2) (39)
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while the remaining terms in Eq. (8) may be expressed, with
some manipulations, as

1 [
e f K&, )b'P () dr
o

oif(y) O ] ™) |
~ _ 40
[ 0 0% (y) sin(';'ry)\&;g 30
where
2 2
0 (v) = X X ngf(y)N§f
k= =
ZI J‘ZI
0¥ (v) = X X A’ (vINY (41)
k=1 j=1

and the functions of n{f(7y) and 7i{’(7) are given in Appendix
B. Substitute Eqs. (38) and (39) into (8), and multiply both
sides by £7 and let £ — 0, one obtains the system of equations

[cos (my) + Qii(y) 0 ]5‘“(0)
0 cos (wy) + OR(y) J,
Qii(y) 0 ] b™(0)
=0 (42a
+ [ 0o o] Vi S
[Q%:m 0 ] b"(0)
0 0kl W
" [cos (my) + QH(y) 0 ]
0 cos (my) + Q%(y)
3(2)(0)
=0. (42b
X T (42b)

Express the components 5"(0) and »®(0) explicitly by
bV(0) = [b5"(0), b§"(0)]" and B (0) = [b(0),
b{»(0)]", respectively, then the above equations can be re-
arranged in the following form:

[cos (my) + Qii(y) Qhi(y) ]
Y cos (my) + QF(y)

B (I _
: {6.‘.2’(0);\/1}} =% tha
[cos (my) + @n(y)

0%(y) ]
0%5(y)

cos (my) + 0% (y)

BV (01,
o = 0. 3
{b_‘f‘ (O)NE} B =R

It is noted that the deformation due to pressure loadings is
totally decoupled from that due to shear loadings for the present
problem, hence, Eq. (43a) will represent the singular behavior
due to pressure loadings while Eq. (43b) is due to shear load-
ings. For nontrivial solutions of Eqs. (43a) and (43b), one
leads to the characteristic equations for <y as follows:

cos? (my) + (@1} + Q%) cos (7wy)
+ (QhHof ~

(due to pressure loadings)

oM =0
(44a)
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B,=0.0 x'=2.0 =20

0.5

Fig. 2 Dependence of the root ¥ on a; for various A(8, = 0, x'" = &@
= 2.0)

and
cos® (my) + (Qx + Q%) cos (1y)
+(01n0% - QB0H) =0
(due to shear Joadings). (44b)

Note that these two equations in the present forms are exactly
the same because

+Q||'- “+Q22 (45a)
Q1101 QnQ?' 0»0% — 0330%. (45b)

Hence, only one of them has to be considered for a crack going
through the interface. One can verify that the characteristic
equation shown in Eq. (44a) (or (44b)) will give the same
equation as that obtained by Erdogan and Biricikoglu (1973)
if the appropriate values of Q5 (or Q%9) for isotropic materials
are substituted in. The characteristic Eq. (44a) has the property
that

Y(A) = y(A™), (46)
since the coefficients of the characteristic equation are both
invariant when A is replaced by A™', i.e

(@i + 2T(A) = (@il + T XA ™) (47a)
(Q1i0f - 0iieih(A) = (@i (AT, (47b)
In the following, we will investigate the effect of some materi-
al’s parameters on the behavior of the root. Before doing so,
we note again that the possible values of Krenk’s parameters
are -1l < v <1,k >~—1,E“ >0, and 6§ > 0 if strain
energy is positive definite. Hence, if one considers only the

cases for v® = 0, then,
—1<ay<1 (48)

while £, is related to o, by

1 1 ~ @ 1 —pWM
;Bn':z{( e + o )Ofu

1 —v® [ —p®
+( —a )} (49)

In the numerical investigations, we choose 8y = may for sim-
plicity where m is a constant. This choice of 8, in part implies
not only » = 0 but also from Eq. (49)

-y ® -
L— g2 1=

W(E} w(_"l}

(50)

is hold. Let’s now consider the effect of the parameters A, a,,
and G, in the following. Figures 2 to 4 are the results of the
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8,=0.0 V=20 «¥=50

Fig. 3 Dependence of the root ¥ on «, for various A (B, = 0, k"' = 2,0,
% = 5,0)

roots 7y versus a, for various values of A with ‘" and «®
both being kept constants. The property of y(A) = y(A ") is
reflected in the numerical results, consistent with our previous
study. Furthermore, the symmetric property of  with respect
to o is observed in Fig. 2, i.e., ¥(ay) = y(—ay), for the case
of k™ = k@ = 2.0. In fact, this property can be verified
directly from the characteristic equation for any values of « ‘"
and k ®, as long as k "’ = k @ is hold. It is also observed from
these figures that the effect of A on the root vy is in general
small. It is also observed that for most values of «y, a root of
v in 0 < 7y < 1 can be found. This means that one singularity
of the type r™"(0 < y < 1) usually occurs for cracks going
through the interface. However, more interesting thing is that
we do find for some material combinations in which the singu-
larity for stresses will disappear, i.e., no root is found in 0 <
vy < I, only v = 0 occurred for some material combinations.
For instance, results plotted in Fig. 3 show that y = 0 occurs
when ay falls approximately in the range —0.068 < a, < 0.17
for the case of B, = 0.0 (¢ = 2.0, k¥ = 5.0) while the
range for e, is longer for the case of 8y = 0.25a, (k" = 2.0,
k® = 50) (see Fig. 4) comparing to that for 8, = 0.0 (Fig.
3). The fact that stresses will be finite for some material combi-
nations has also been observed by Bogy (1970) in the study of
isotropic bimaterial problems, where the region for the material
combinations to give finite stresses is given explicitly in terms
of Dundurs’ parameters.

.=0.250, =20 ¥'?=5.0

7 s

™ T T T

Fig. 4 Dependence of the root ¥ on aq for various A (8, = 0.25a, x
=20, k" = 5.0)
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For the present problem, it seems that to investigate analyti-
cally the regions of all possible material combinations in which
the stresses will be finite is not so straightforward, since the
characteristic equation contains many material parameters.
Hence, we investigate numerically only the cases that are related
to the results presented in Fig. 3 and Fig. 4. The results of the
regions for which the material combinations to give the stress
finite, i.e., ¥ = 0, are shown, respectively, in Fig. 5 and Fig. 6.
The shaded regions shown in Fig. 5 and Fig. 6 are both plotted
with k " = 2.0 being kept constant. The difference in plotting
these two figures is the choice of m (m = 0 for Fig. 5 while m
= (.25 for Fig. 6). It is worth to mention that in studying these
shaded regions, numerical results tend to show that each shaded
region plotted in Fig. 5 and Fig. 6 is independent of the parame-
ter A. In fact this phenomenon has already been revealed in
the results of Fig. 3 and Fig. 4, since it is seen that all curves
corresponding to different values of A collapse to one point
whenever v = 0. One more findings is that for orthotropic
bimaterials with property «, = 8, = 0 will always fall in the
shaded regions.

Before ending this section, one final remark to be noted is
that 54V (0) and 52 (0) (or b (0) and 5> (0)) are related
to each other by Eq. (43a) (or Eq. (43b)) which should be
incorporated, besides the auxiliary condition

’ y
J.‘ L™ pD(r)dr = fz L '@ (1) dt, (51)
0 (1]

into the solutions of the singular integral equations in order to
have a unique solution for the problem.

4 Some Observations

The singular integral equations obtained in Section 2 which
are given in real forms are now employed to explore in this
section some interesting phenomena for the stress intensity fac-
tors for cases when crack faces are subjected to self-equilibrat-
ing loadings. Crack (or cracks) may be embedded in one of
the materials (case 1) or may be embedded in both (case II).
The results are described below.

CASE I: (Only one vertical crack embedded in one of the
materials (say material #2)).

For convenient discussion, we will assume that the crack is
embedded in material #2 while material #1 is crack-free. Under
this assumption, one can drop the coupled terms in the singular
integral equations shown in Eq. (8) and only one of the singular
integral equations with kernel function K** has to be considered.

Bo=0.0c, kV=2.0

06 3

Ldi Lt L L e L
1.0 20 30 40 50 60 70
2
K

Fig. 5 Material combinations fallen in the shaded region will produce y
=0(Bo = 0, «'" = 2.0)
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B0o=0.2500 kM=2.0

=0.6 FrrrrrrrrrrrrTryTTYTTYYYY
3.0 4.0
2

IIIC( )

TITTTTTIT T TITeTTT

50 60 70

Fig. 6 Material combinations fallen in the shaded region will produce y
=0 (B, = 0.25a,, x'"' = 2.0)

In the following two special orthotropic bimaterial compositions
are considered.

(A) A =816 = 1. Suppose that the stiffness ratio
5 of each orthotropic material has the same value, i.e., 5"
= §‘®, then one can easily find that the previous defined four
generalized Dundurs’ constants are reduced to two only, i.e.,

), = ) = Oy
B = B2 = fo. (52)
With these special results, matrix defined in Eq. (36¢) becomes
N N% 1 a + B8 Bo(l + ao)
[N%% N] “T-/ [ﬁa(l faw) a0+t B ] o

and the coefficients defined in Eq. (34) will be

*

Cg = Cg
*

Co = Cy
K
Cio = Cio,

which implies that diagonal terms of the kernel function K*
are exactly the same, so that one can conclude from this fact
that the stress intensity factors due to pressure loadings would
be the same as those due to shear loadings, as long as the
magnitude of both loadings is the same. This phenomenon is
plotted schematically in Fig. 7.

Now suppose that the material alignments of both materials
are rotated by 90 deg (see Fig. 3). Since the ratio of §"!/§®
will remain the same value (i.e., equal to 1) and the kernel
function K* is related to §'*’ (@ = 1, 2) only through the
ratio of these two quantities so that the kernel function will be
invariant under the rotations of 90 deg of both materials, so
long as the condition §‘"* = §?’ is satisfied for the orthotropic
bimaterial compositions. Based on this fact, one can conclude
that the stress intensity factors will be invariant as well, obvi-
ously the tractions applied on the crack surface be kept the same
magnitude under rotations. This fact is shown schematically in
Fig. 8.

Let’s further investigate the features of the kernel functions.
Suppose that the material #2 is degenerated, i.e., k> = 1 while
the condition §' = §‘? is still held, then the kernel function
K2 will be reduced to that for isotropic bimaterial problems if

MARCH 1996, Vol. 63 / 197
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(a)

(b)

Fig. 7 If the compaositions of dissimilar orthotropic materials are such that 5! = 512,
then (K)4 = (Ky)a:, (K)s = (Ku)a- (under the same magnitude of the applied load, i.e.,

oc=17)

(a)

(b)

Fig. 8 If the compositions of dissimilar orthotropic materials are such that 5" = §2
and if material axes of (b) are obtained by rotating 90 deg of material axes of (a), then
{Ki)ae = (Ki)a+g+. (This conclusion also holds for shear loadings.)

(a)

(b)

Fig. 9 If the compositions of dissimilar orthotropic materials are such that §'" = 52
and furthermore if «'® = 1 and a; = a, B, = B (a, B: Dundurs’ constants for isotropic
bimaterials of (b); o, fo: generalized Dundurs’ constants for orthotropic bimaterials
of (a)), then (Ki) ap = (K/)av0+s (Ku) as = (Ku)a-5-. (This is the feature of correspondence.)

the orthotropic bimaterial compositions are chosen such that the
following conditions are satisfied

Qyp = o
Bo=p

where a, 8 are Dundurs’ constants for isotropic bimaterial prob-
lems. This implies that stress intensity factors of Fig. 9(a) can
be obtained by the corresponding isotropic bimaterial problems
as long as the conditions mentioned above are satisfied. This

198 / Vol. 63, MARCH 1996

establishes the correspondence between dissimilar orthotropic
materials and isotropic bimaterials, at least for the problem of
a crack perpendicular to the interface.

(B) W=0. Suppose that the compositions of the dissimi-
lar orthotropic materials are chosen such that the matrix W
defined in Eq. (28) vanishes, then the generalized Dundurs’
constants of 4, and £, vanish too. With the property of W =
0, one can find that the stress intensity factors due to pressure
loadings (Fig. 10(a)) will be the same as those due to shear
loadings (7 = o) (Fig. 10(b)), if the material axes of Fig.
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(a)

(b)

Fig. 10 If the material axes of {b) are obtained by rotating 90 deg of material axes of
(a) and if the magnitude of the applied load is the same, i.e.,, ¢ = 7, then (Kj)as =

(Kiryara

10(b) are obtained by rotating 90 deg of the material axes of
Fig. 10(a) for both materials. This is apparent due to the fact
that the following parameters’ changes according to the follow-
ing ways when material axes are rotated by 90 deg:

§YE@ o D5
) s
(54)

Substituting these new parameters into the kernel function K*
one would find that the new kernel function is the same as
before, the only difference is that the position of the diagonal
terms of the kernel function is interchanged. The above phenom-
enon is plotted schematically in Fig. 10.

In addition to the condition W = 0, let’s further assume that
the orthotropic bimaterial compositions have the properties, i.e.,
A=6015 =1 and @, = @, = 0, then the stress intensity
factors for dissimilar orthotropic materials (Fig. 11(a)) would
be the same as those for a homogeneous medium (Fig, 11(b)).
This means that the stress intensity factors of this special kind
of dissimilar orthotropic materials would be independent of the
material constants. The conclusion stated above can be verified
by noting that the kernel function K** vanishes if the above
conditions are satisfied.

CASE II:
rials).

For case 11, the coupled singular integral Egs. (8) have to be
considered simultaneously. Hence, we will discuss only the
phenomenon for A = §V/§® = 1. Suppose that both of the
materials, whose compositions are such that §" = §®, are

0y —* Q.

(Two cracks each embedded in one of the mate-

(a)

rotated by 90 deg, then the stress intensity factors will remain
the same (Fig. 12). Let’s further assume that x ‘") = x® = 1,
i.e., both orthotropic materials are degenerated, then one would
find that the stress intensity factors for dissimilar orthotropic
materials can be obtained from those for dissimilar isotropic
materials if the dissimilar orthotropic materials are chosen such
that the conditions of

o =0 =
B|=ﬁzmﬁ

are satisfied, here a, £ are Dundurs’ constants for isotropic
bimaterial problems (Fig. 13).

5 Some Numerical Results

In this section, we will give some numerical results pertaining
to the problem of an isotropic material (material #2) joined
perfectly to an orthotropic material (material #1). The coupled
singular integral equations developed in Section 3 are discret-
ized according to the method suggested by Gerasoulis (1982).
In the following, only the problem of one crack embedded in
material #2 is investigated. For problems of cracks going
through the interface, the numerical approach is essentially the
same with the exception that if the singular behavior for stresses
at the point of interface does exist, the singular behavior has to
be taken care of in the numerical scheme.

Before presenting the results for the problem described above,
it is better to compare our results with those available for iso-
tropic bimaterial problems in order to ensure the accuracy of the
present numerical approach. Figures 14 and 15 are the results for

(b)

Fig. 11 The stress intensity factors of (a) are independent of the dissimilar ortho-
tropic materials' constants, if W = 0 and §'" = 5'*' are satisfied

Journal of Applied Mechanics
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(a) (b)

Fig. 12 If the compositions of dissimilar orthotropic materials are such that 5" = §'2,
then the stress intensity factors of (a) and (b) are the same

E% v (isotropic) #

(a) (b)

Fig. 13 If the compositions of dissimilar orthotropic materials are such that 5! = 5@
and furthermore if «"' = x® = 1 and @ = a, B, = B (a, B: Dundurs’ constants for
isotropic bimaterials of (b); a,, fB,! generalized Dundurs’ constants for orthotropic
bimaterials of (a)), then the stress intensity factors of (a) can be obtained from (b).
(This is the feature of correspondence.)

L (_ (2)_ (1)_ «(2)_
2.0 85_0.228(10 £''=k""=1 6 6 1 55 6020.2280'0 !C“):;‘C(z):]. 6(1):6(2)=1
1.7
(Kpa -
fTmC i
1.4
1.1
0.8 { —— d/c=1.10 = Al [ N
| - - d/e=125 = e g?;%ég
--- d/c=2.00 1 --- d/c=2.00
1 ---- d/c=5.00 ---- d/¢=5.00
4as44 ERDOGAN 124242 ERDOGAN
0.5 AR L= Rl A= 0.5 P O D S S o G B S T N BT B e A |
i 0.0 1.0 —1.0 0.0 1.0
(04
0 Xy
Fig. 14 Stress intensity factor at point A for dissimilar Isotropic materi-  Fig. 16 Stress intensity factor at point B for dissimilar isotropic materi-
als for various values of d/c (o = 1) als for various values of d/c (o = 1)
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stress intensity factors for crack faces subjected to uniform
pressure o. Both materials are taken to be isotropic, i.e., k"
= k@ =1,8" = §? = 1. The dissimilarity of these materials
is through the Dundurs’ constants, @ = ap and § = f,. Note
that ey = By = 0.0 corresponds to homogeneous medium. For
the purpose of comparison, we select m = 0.228. The results
obtained by Erdogan and Biricikoglu (1973) who investigated
only one material combination (material #1: Aluminum E;, =
107 psi, v, = 0.3 and material #2: Epoxy E, = 4.45 x 10° psi,
v, = 0.35) are also plotted in Figs. 14 and 15. Good agreement
can be observed. Although results plotted in Figs. 14 and 15
are under uniform pressure loading only, we have to emphasize
that these results apply also to the problem that is under uniform
shear loading (7 = 1). This is because the choice of A = §V/
§* in plotting Fig. 14 and Fig. 15 is equal to one, hence,
according to the observations of previous sections (please see
Fig. 7), the aforementioned substitution of results of normal
loading to shear loadings should be applied. Moreover, results
of Figures 14 and 15 can also be applied to many other ortho-
tropic bimaterial problems as long as A = 1. For instance, let’s
take 6" = §® =2, or 6" = §® = 3, etc., all these kinds
of orthotropic bimaterial problems should the response of the
stress intensity factors be exactly the same as those presented
in Figs. 14 and 15.

Next, we present numerical results for the problem that mate-
rial #2 being isotropic (i.e., k ® = 1, §'® = 1) while material
#1 being orthotropic. For simplicity, we present only the results
for By = 0.0 and d/c = 1.1. It is seen that the parameter §‘"
has significant effect on the stress intensity factors for most
values of ay, as shown in Figs. 16 and 17. Note that there are
two extreme values of ag (i.e., ¢p = —1 and oy = 1) that the
effects of 6" on the stress intensity factors disappear. This is
due to the fact that as oy = —1, we have &, = @; = 1 (see Eq.
(29)), and from Eq. (36¢),

Nit = N3 = ~1
Ni = Nt = 0.

Hence, the kernel functions are reduced to the problem for a
half-plane solid with traction-free boundary as a, = —1. There-

Bo=0 £?=1.0 6®=1.0 d/c=1.1

2.0

------- o=1.0
) (1)_
I 5{1)22'9
i 6 '=0.5
0.5 B TR T SOU B N D RN Y RO BN R B RN E D S |
-1.0 0.0 1.0
Xo

Fig. 16 Stress intensity factor at point A for dissimilar isotropic materi-
als for various values of '"! (o = 1)

Journal of Applied Mechanics

Bo=0 £®=1.0 6®=1.0 d/c=1.1

Fig. 17 Stress intensity factor at point A for dissimilar isotropic materi-
als for various values of 6! (z = 1)

fore results will be independed of 6", As to the case of ag =
1, the generalized Dundurs’ constants become

o) = & = 1
1—v®
2,

and with these values the expressions for N¥, N#, N3, and
N3t will be given by Eq. (37). Hence, the kernel functions will
this time correspond to the problem for a half-plane solid with
clamped boundary as a;, — 1 and results are again independent
of 6§, It should be noted that the choice of §, = 0 in plotting
Figs. 16 and 17 implies that W = 0. Hence, according to the
observations that have been discussed in previous section
(please see Fig. 10), those results presented in Figs. 16 and 17
are actually related to each other by

(K)a (for 6 = 2.0) = (Kj))4 (for 6" = 1/2)
(K)a (for 6 = 1/2) = (Ky)4 (for 6V = 2.0).

One last thing to be mentioned is that results of Figs. 16 and
17 that correspond to the case for § "’ = 1.0 = §® apply also
to other orthotropic bimaterial problems as long as the material
parameter A = §"/§@ = 1.

5@ Iﬁl =58, =
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APPENDIX A
The vector function f(z) is given by

and
q( ] Ji—)‘)

+ g (g

ni = BwPw®) " (g (g -
Hyatr
nf = (W @) gD (g7 — q'7)

(2} (2)7 (137
(g~

L Vi

+ g%
nl = (dwVw®) g (2)"(qu1' * q‘l‘l_*)
:2;*(9,(!;'* q‘”l VALY
n¥ = (AwPw®) ' (gPgP" (""" - ¢ ')

0 ke S

(21 (m(q q(_u"T) } AT
alt = (4w‘_'-‘w!?’)"{q“’q?"(q‘_""’ - ¢
+ q‘?’q‘w(q“’ Y _ q(_n"V}}A—v
g = (4w‘—”w(2’J_l{qg’zﬂi’ﬂm(qt—nl_’ - q&,]l-‘,)
+ ql2) qtzrf(qm' - qr_n'*"’)}A1—r
i = (dwPw®) M gPgP (g - Qu’_?J
+ ¢PgP (@ —qP ) }AT
A8 = (4w Pw®) ™ (¢@gP (g7 ~ ¢
+qP g (¢ — gAY (B2)
where
¢V =W+ w®, ¢ =w - w®, (a=1,2). (B3)

Note that n 2 (and A¥ ) and n ! (and A} /) can be obtained from
(B1) and (B?_) by 1nlerc.h.mg1ng the superindices (1) = (2)
and (2) — (1), respectively, and also by replacing A by A",
When material #1 is degenerated, i.e., k, = 1 then Egs. (B1)
and (B2) become

2
Y {diag < In (z; — z?), In (22 — 2P) > B 'MB@LB®"}b, 7 € #1
2rif(z) = |

2 em—
diag < In (z; — z0), In (22 — 28) > B®'b — ¥, {diag < In (z; — 2P),

J=l

In (z; — z°) > BY"'M*BOPLB®7}p, 7 € #2

where
(j=12)

is the point where point dislocation b is acting. {For conve-
nience, only the result of b acting at material #2 is given above.)

D _ D (2),.D
Zy =x1 +p;jx:,

APPENDIX B

The functions of ng’(y) and /g’ (y) appearing in Eq. (39)
are as follows:

n - _(2w(1:)—2{q<|1’ + q(n -q n'*’-q(n?'v q“’zq“”}
,,H = — ()2 (g g 4 gDl _ g _ gib)
il = —(2w) (g OgP + g gV — gl - g0}

ni = —<2w‘_”> H2, < igtF g™ giF gty

- 4\
3 W 11 ~ ] 11 ~11 __ 11 i i 11
Al = Ryn, HAip=np, fa=ny, fin=n;

(B1)
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nit=—-y2-7v), nh=-(1-9)2-7y),
nil = y(l =), nip=(-7v)>* (B4)
and
nlt = Qw®) (2 - )(g® — gD} A

nii = Qu®) (2 - ¥)(@Pq?7 - ¢P gAY
ni = 2w)TH(1 = y)(g2" - ¢P) A
3 = )T - y)(@Pq?" - ¢PgP) ) AT
Al = Q) = y)(@Pe®" - ¢PqPT) A
i = QuD) L = V@D - @) A
= Q) Y@V g®" - ¢PqP) AT

75 = Q) {y(g"q®" - ¢@ P ATT. (BS)
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When material #2 is degenerated, i.e., x; = |, then Eq. (B2) A2 = QM) (1 — Y)(gP T =gV YA

becomes 18 = Qu®) (2 - NPT - g AT (B6)
nit = (20) |{,y(q(+n* Y q‘_nh)}Al_T When both materials become degenerate, (x; = 1, kK, = 1),
= 2w - Y@ = g ) AT (B2) reduces to
aft = o) (1(g " — ¢ DAY nl=y(2 - y)A"", nf=-(1-y)2-y)A*,
n = Qw1 - Y@L - gAY ni=—y(l - y)A", nj=(-y)A*?
Al = Qw1 =YXV - gAY A= (1—-9y)PA™, Aj=(1-7)2-yA"",
A = D) {2 - P =g M)A A=yl —y)A™, Af=y2-y)A"". (B7)
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A Finite Element Analysis of
Mode Ill Quasi-Static Crack
Growth at a Ductile-Brittle
Interface

Steady-state quasi-static crack growth along a bimaterial interface is analyzed under
Mode IlI, small-scale yielding conditions using a finite element procedure. The inter-
face is formed by an elastic-plastic material and an elastic substrate. The top elastic-
plastic material is assumed to obey the J, incremental theory of plasticity. It under-
goes isotropic hardening with either a bilinear uniaxial response or a power-law
response. The results obtained from the full-field numerical analysis compare very
well with the analytical asymptotic results obtained by Castarieda and Mataga
(1991), which forms one of the first studies on this subject. The validity of the
separable form for the asymptotic solution assumed in their analysis is investigated.
The range of dominance of the asymptotic fields is examined. Field variations are
obtained for a power-law hardening elastic-plastic material. It is seen that the stresses
are lower for a stiffer substrate. The potential of the bimaterial system to sustain
slow stable crack growth along the interface is studied, It is found that the above
potential is larger if the elastic substrate is more rigid with respect to the elastic-
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plastic material.

1 Introduction

Ductile-brittle interfaces occur in a variety of advanced engi-
neering materials like composites, cermets, polycrystalline in-
termetallic alloys, etc. Interface failure in these materials is a
common occurence caused due to the propagation and coales-
cence of pre-existing or nucleated cracks along the interface.
Hence an understanding of the mechanics of interface failure
is essential to gauge the efficiency and reliability of such compo-
nents. In this work, the interface is assumed to be weaker than
both the materials and hence the crack is expected to propagate
along it.

The understanding of interfacial crack propagation is at a
preliminary stage of development and thus the bulk of the work
reported till now deal with stationary cracks in linear-elastic
materials. Rice (1988) and Shih (1991) have reviewed the
progress made on the mechanics of interface fracture. Some
important contributions dealing with material nonlinearities in
the context of a stationary crack at a bimaterial interface include
those of Shih and Asaro (1988, 1989) and Zywicz and Parks
(1989), on power-law hardening and perfectly plastic behavior,
respectively.

In elastic-plastic materials, a slow, stable crack extension
phase under monotonically increasing load or displacement con-
ditions is often observed prior to catastrophic failure. An elastic-
plastic material offers much more resistance to nonproportional
straining (which occurs near the tip of a propagating crack)
than to proportional ones, and this is the main source of stable
crack growth. Several investigators (Chitaley and McClintock,
1971; Drugan et al., 1982, and Castafieda, 1987) have studied,

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS .

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL oF APPLIED MECHANICS

Manuscript received by the ASME Applied Mechanics Division, Mar. 4, 1993;
final revision, July 15, 1994, Associate Technical Editor: D. M. Parks,

204 / Vol. 63, MARCH 1996

using analytical methods, the asymptotic fields near the tip of
a growing crack in homogeneous elastic-plastic materials. Nu-
merical studies of quasi-static crack growth in homogeneous
elastic-plastic materials have also been carried out by many
researchers (Dean and Hutchinson, 1980; Narasimhan et al.,
1987).

By contrast, very few contributions have been made till now
on crack propagation along the interface between two dissimilar
elastic-plastic materials, The work by Castafieda and Mataga
(1991) is one of the first studies on this subject. They performed
an asymptotic analysis and obtained the near-tip stress and ve-
locity fields of a crack propagating steadily and quasi-statically
along the interface between a strain-hardening ductile material
and a brittle material. The ductile material is characterized by
a Jp-flow theory with either linear hardening or perfect plastic-
ity. Both the cases of antiplane shear and Mode I plane strain
were considered. Drugan (1991) also derived the stress and
deformation fields near the tip of a crack that is propagating
quasi-statically along the interface formed by a rigid material
on one side and an elastic-ideally plastic material on the other.

It is the objective of this work to perform a full-field finite
element analysis of steady quasi-static crack propagation under
Mode III, small-scale yielding conditions along a bi-material
interface. The interface (see Fig. 1) is formed by an elastic
material (material #2) and an elastic-plastic material ( material
#1). The latter is assumed to exhibit either linear isotropic
hardening or power-law hardening.

The organization of the paper is as follows. In Sec. 2, the
constitutive model that is used is presented. In Sec. 3, the finite
element procedure employed to simulate steady-state crack
growth along the interface is briefly described. In Sec. 4, the
results obtained from the analyses are discussed. The finite ele-
ment mesh used in this work is well refined near the crack tip
so that an accurate modeling of the near-tip fields is achieved.
This is confirmed by a good comparison between the present
numerical results and the analytical (asymptotic) solution of
Castafieda and Mataga (1991) for the case when material #1
displays linear isotropic hardening (see Sec. 4.1).
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Fig. 1 Schematic representation of the bimaterial with an interface
crack

The validity of the separable solution assumed in the above
analytical work for the asymptotic fields is examined. The range
of dominance of these fields is also investigated. The effect of
the mismatch in the elastic shear modulus between the two
materials on the stresses and deformations near the propagating
crack tip is studied. With a view to examine the potential of
the bimaterial system to sustain slow stable crack growth along
the interface, the ratio of far-field J integral for steady-state
crack growth to its value at initiation J,/J. is estimated using
a critical crack-tip opening displacement criterion ( ductile frac-
ture criterion). The effect of the ratio of the elastic shear modu-
lus of the two materials on the J,/J, ratio is investigated.

2 Constitutive Model

In this paper, a small-strain, incremental plasticity theory is
employed along with the Huber-Von Mises yield condition and
the associated flow rule to describe the constitutive behavior of
the elastic-plastic material #1 (see Fig. 1). The material #2
which forms the other side of the interface is taken as isotropic-
elastic with shear modulus G..

The Huber-Von Mises yield condition for isotropic hardening
under antiplane shear takes the form,

O(7, ¥) =757 — TH(Y") = 0. (n
Here, 7, = o, and 7, = o3, are the shear stress components,
and ¥ = [V#7 + 4% -+ dtis the accumulated equivalent plastic
strain. The notations y, = 2€3, and v, = 2¢3, will be used for
the engineering shear strains. For a linear hardening elastic-
plastic material G/ is the tangent modulus under simple shear
{which is a constant), and G, is the elastic shear modulus. For

a power-law hardening material, the strain-hardening function
7(¥") is defined by the relation,

() - () - ()
You Tol Tw ‘
Here, n is the strain-hardening exponent, T, is the initial yield
stress, and yo, = 7o/ G, is the initial yield strain of the material
under simple shear. It should be noted that n = 1 corresponds
to the case of a purely elastic material and n — = pertains to
the elastic-perfectly plastic limit.

The constitutive law for material #1 when it is currently
experiencing elastic-plastic deformation can be expressed as

. G TaTa | .
Fa =G|[5nﬂ—G|—+IH%-] a.

(2)

(3)

In the above equation, H is the plastic modulus which is defined
as
.y

= 4 4
> (4)

3 Numerical Procedure

In this paper, steady-state crack growth along the interface
is simulated under Mode III using the finite element procedure

Journal of Applied Mechanics

based on moving crack-tip coordinates devised by Dean and
Hutchinson (1980). Herein, a semi-infinite crack which has
been propagating in a quasi-static manner with velocity V under
Mode I1I small-scale yielding conditions at a bi-material inter-
face is considered. It is assumed that the zone of inelastic defor-
mation is contained in a small region near the crack tip in
material #1 and the elastic K-field holds good at points far away
from the tip. A brief description of the numerical procedure is
given below.

The crack tip coordinates (X,, X,) and the field quantities
are normalized as

-X‘n = X(r!(K;TOI)Z‘

&‘3 = HHI(KZIG]TN )?
(&)

Fo = Tad Tors

Yo = Ya"‘ Yor-

Here, K is the remote Mode III stress intensity factor. Further,
the crack is assumed to propagate steadily in the X, direction
with velocity V, so that the time rate of change of any field
quantity at a fixed material point can be expressed as

d . )
;i;( )=0)==-V—10() (6)

X,
By applying the principle of virtual work, and making use of
the normalizations given in (5), and the steady-state condition
(6), the (nonlinear) finite element equilibrium equations can
be derived (see Dean and Hutchinson, 1980).

An iterative procedure (see Dean and Hutchinson, 1980) is
used to solve these nonlinear equilibrium equations. In the pres-
ent formulation, the stresses and plastic strains have been up-
dated using an explicit stress update algorithm (with subincre-
mentation), by integrating along the negative X-direction
(holding X, fixed), as suggested by the steady-state equation
(6) subject to the initial state of the material point outside the
elastic-plastic boundary.

To simulate steady-state crack growth along the interface, a
large rectangular domain representing both the materials form-
ing the interface is modelled with four-node rectangular finite
elements with bilinear shape functions placed parallel to the
interface line (X, = 0). The crack line is located along the
negative X -axis. The mesh contains a total of 1286 nodal points
and 1200 four noded rectangular elements. The size of the
smallest element near the crack tip is designed to be less than
1/6000 of the expected size of the plastic zone. Also, the mesh
is graded in a manner such that a majority of elements are
within the expected boundary of the plastic zone and relatively
large size elements are employed in the far-field elastic region.
The above mesh design is expected to resolve the fields inside
the plastic zone and particularly near the crack tip accurately.
This will be confirmed when comparisons with available analyt-
ical solutions are made in Sec. 4. Displacement boundary condi-
tion based on the elastic K-field is prescribed along the top and
bottom boundaries of the mesh, while traction (from the K-
field) is specified on the upstream (right) and downstream (left)
boundaries of the mesh.

4 Results and Discussion

Attention is focussed on two sets of bimaterials. One set of
bimaterials has both the elastic-plastic top and the elastic sub-
strate of the same stiffness (same value of the shear modulus,
i.e., G, = G,or 8 = G,/G, = 1). The other combination has
the substrate considerably stiffer (8 = G,/G, = 10).

4.1 Linear Hardening Elastic-Plastic Material and Elas-
tic Substrate. In this section, the results obtained from the
finite element analysis for the case where material #1 exhibits
isotropic linear strain hardening with a tangent modulus G; are
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discussed. As mentioned in the Introduction, Castafieda and
Mataga (1991) have recently derived an asymptotic analytical
solution for this case under the conditions of both Mode III as
well as Mode I plane strain. Their work involved two important
assumptions. First, it was assumed that the dominant term for
the stress and velocity fields near the crack tip is separable in
polar coordinates r and # (see Fig. 1). Secondly, the radial
variation of the dominant term was taken to be in the form r*,
where s is the strength of singularity of the field quantities near
the crack tip. Thus, on using the normalizations introduced in
Eq. (5), the structure of the near-tip variation for the polar
stress components proposed by Castafieda and Mataga (1991)
can be written as

#, = APy (6),
' } 7

To = AF'y(0),

as 7 — 0. Here, A is an amplitude parameter which is undeter-
mined by the asymptotic analysis. Further, y,(6) and y,(8) are
dimensionless angular functions which are normalized such that
¥2(0) = 1. Castafieda and Mataga (1991) solved the governing
differential equations numerically and obtained the exponent s
and the angular functions y; (#) for 8 = 1 and 8 — = for several
values of ¢ = G!/G,.

4.1.1 Validity of the Asymptotic Solution. The validity of
the asymptotic analytical solution of Castafieda and Mataga
(1991) is checked by comparing their solution with the results
obtained from the present full-field finite element analysis. First,
the radial dependence assumed in this near-tip stress field is
examined. To this end, the variation of log, () with log, (X,)
where X, is normalized distance ahead of the propagating crack
lip is shown in Fig. 2, for @ = G}/G, = 0.2. The numerically
obtained results are presented in this figure corresponding to 8
= 1 and 10. Also displayed in this figure are the best fit straight
lines (by least squares method) to the six nearest points to the
crack tip.

The strength of the singularity s was obtained directly by
measuring the slope of the aforementioned best fit straight lines
like those shown in Fig. 2. The s values thus obtained from the
present finite element results are compared with those deter-
mined from the asymptotic analysis by Castafieda and Mataga
(1991), in Table 1. It can be seen from this table that the s
values computed from the finite element results match very
closely with those given by Castafieda and Mataga (1991) for
a = (0.2. The computed value of s differs more from the asymp-
totic results with decreasing value of «. Further, it must be noted
from Table | (see also Fig. 2) that the strength of singularity, for
any particular value of «, is lower if the substrate is more rigid,

b soene G /0 = } L

Ahsas 0'/0‘ -

]

1+

G|1-.|vv-v_|4'-:r|-|
LOG(R)

Fig. 2 Logarithmic plot of the radial stress variation for « = 0.2 and 8
=1,10
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Table 1 Strength of singularity s

Asymptotic | Numerical || Asymptotic | Numerical
a | (B=1) | (B=1) | (B=c0) | (B=10)
s 8 3 s
0.2 -0.343 -0.340 -0.277 -0.280
0.1 -0.270 -0.266 -0.207 -0.205
0.05 -0.204 -0.192 -0.153 -0.146

It is important to ascertain the range of dominance of the
asymptotic solution of Castafieda and Mataga (1991). To this
end, straight line fits having the exact slope s given in their
paper were again made to the numerically obtained results of
log, (#2) versus log. (X,) corresponding to the first few points
ahead of the tip. The amplitude parameter A in Eq. (7) was
determined from these straight line fits. The distance ahead of
the crack tip where the difference between the points obtained
from the numerical solution and the above best fit straight lines
becomes significant (say, by about five percent) is a measure
of the range of dominance of the asymptotic singular solution
of Castafieda and Mataga (1991).

This range of dominance along with the amplitude parameter
A is shown in Table 2 for various values of & and for g = 1
and 10. In interpreting the results of Table 2, it must be noted
that the maximum plastic zone size which occurs ahead of the
crack tip in material #1 is between 0.2 to 0.3(K/7¢,)?. It can
be seen from this table that the range of dominance depends on
the hardening parameter &. As o decreases (diminishing strain
hardening) it can be observed that the range of dominance
falls, allowing the actual fields to deviate from the asymptotic
solution at a smaller distance ahead of the crack tip. For & <
0.005, the range of dominance of the asymptotic stress variation
given by Castafieda and Mataga (1991) becomes extremely
small (less than 0.5 percent of the maximum plastic zone size).

Secondly, it is examined whether the variable-separable form
which was assumed for the near-tip fields in the analytical as-
ymptotic analysis, is corroborated by the finite element solution,
For the variable-separable solution (Eq. (7)) to be valid, the
angular distribution of 7, (r, 8)/(A#*) should be the same for
any near-tip contour surrounding the crack tip. Here it is most
desirable to consider circular contours surrounding the crack
tip since all the points on the contour will be equidistant from
the crack tip. However, this is not directly possible since the
present numerical procedure employs rectangular elements par-
allel to the crack line (see Sec. 3). Hence, the stresses obtained
from the finite element analysis ( corresponding to material #1)
were first smoothed using a post-processing technique and angu-
lar variations along near-lip semi-circular contours were ex-
tracted from the smoothed results,

The case & = 0.1 and 8 = 1 is considered here for discussion.
The value of A was determined following the procedure dis-
cussed above (see Table 2). The angular variation of the func-
tions y,(6) = 7.(7, 0)/AF" and y,(8) = 747, 8)/AF" obtained
from the finite element results, are plotted along two semi-
circular contours with different normalized radial distance #
from the crack tip in the upper half of the bi-material in Fig.

Table 2 Range of dominance of the asymptotic field and the amplitude
parameter A under small-scale yielding

ﬁangc of Dominance || Amplitude Parameter A
o B=1 =10 =1 A=10
0.2 0.026 0.030 0.527 0.583
0.1 0.016 0.017 0.568 0.632
0.05 | 0.007 0.008 0.604 0.678 |
0.01 0.0017 0.0013 0.681 0.746
0.005 [ 0.0010 0.0008 0.718 0.770
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Fig. 3 Variation of the dimensionless angular functions for two different
semi-circular contours fora = 01and 8 =1

3. It should be noted that both these contours are well inside
the plastic zone in material #1. It can be seen that there is a
good agreement between the distribution of the angular func-
tions along the two contours. This suggests that the separable
form considered by Castafieda and Mataga (1991) is a reason-
able assumption for the Mode III case,

4.1.2  Angular Variation of the Velocity Field. The angular
variation of the normalized velocity field, §, = —ua/(V,q ) in
the top half of the bi-material is shown in Figs. 4 and 5. The
centroidal values of %, in the elements located along the rectan-
gular contour shown in the inset of Fig. 4 have been used to
construct these plots. In Fig. 4, the angular variation of velocity
is compared for &« = 0.001, 0.05 corresponding to the case
= 1. In Fig. 5, they are compared for the same values of «
pertaining to 8 = 10.

The angular variation for & = 0.001 in Figs. 4 and 5 is similar
to the analytical results given by Castafieda and Mataga (1991).
It is observed from these figures that the distributions for o =
0.001 and 0.05 crossover at approximately ¢ = 55 deg. In both
these figures it can be seen that the magnitude of the velocity
is same for & = 0.001 and 0.05 at § = 0. From the fact that
the magnitude of velocity is larger for the case of higher strain
hardening (larger a) over a substantial angular range (55 deg
< 6 < 180 deg), it is expected that the crack profile will also
be larger for this case irrespective of the value of 5. On compar-
ing Figs. 4 and 5 it is noticed that the magnitude of the velocity
is lower for a stiffer substrate indicating that the crack profile
for material #1 will be lesser if 4 is higher.

Finally, it is worth mentioning, that the velocity 3 at the
interface line (# = 0) is smaller for a larger value of 4 and is
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Fig. 4 Angular variation of the velocity field for « = 0.05, 0.001 and
B=1
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Fig. 5 Angular variation of the velocity field for &« = 0.05, 0.001 and
B =10

expected to vanish for § — o in accordance with the rigid nature
of the substrate for this case.

4.2 Power-Hardening Elastic-Plastic Material and Elas-
tic Substrate. In this section, the results obtained from the
finite element analysis for the case where material #1 exhibits
power-law hardening with a hardening exponent n are dis-
cussed. No asymptotic solutions are available for crack growth
at a bimaterial interface when one of the materials exhibits
power-law hardening. Hence, no direct comparison is possible
between the present finite element results and an analytical
solution for this case.

4.2.1 Near-Tip Stress Distribution. The normalized stress
#, is plotted with respect to normalized distance X, ahead of
the propagating crack tip in Fig. 6 for two different values of
the hardening exponent, n = 10 and n = 5. The cases of § =
1 and 10 are considered. It should be noted that the length scale
over which the plots are shown in Fig. 6 is well inside the
plastic zone in material #1.

It can be readily seen from the above figure that the stress
becomes unbounded as the crack tip is approached. Also, the
stress #, for the bimaterial with a stiffer substrate (larger 8) is
significantly lower for a given value of n. As in the linear
hardening case, it is found on comparing the curves correspond-
ing ton = 10 and n = 5 in Fig. 6 that the stress at a certain
normalized distance ahead of the crack tip decreases with dimin-
ishing strain hardening (larger values of hardening exponent
n). As the level of hardening decreases the stress singularity
falls and, in the case of a homogeneous material, the T, stress
ahead of the crack tip in the limit n ~ = approaches a constant
value of 7, except, perhaps, very close to the crack tip.

T T RO W N T TN Y R T N WO OO TR N RO T TN T Y O T SN TN A W S W 1
20 ] -8 Gy /Gy = 1 } -
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Fig. 6 Radial stress variation ahead of the crack tip forn = 5, 10 and g
=1,10
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The near-tip angular variation of 7, and 7 in material #1 is
similar to the linear hardening case (see angular functions
shown in Fig. 3). It was found that a larger value of 8 reduces
the magnitude of the stresses around the crack tip. Also, increas-
ing n (for a fixed £) produces a significant decrease in the near-
tip stress field. It is of interest to compare the near-tip angular
stress variations obtained in this work corresponding to very
low strain hardening (of material #1) with the asymptotic solu-
tion given by Drugan (1991). It was found from the present full-
field numerical results under small-scale yielding conditions that
for the case of 8 = 10 and low strain hardening, 7, (r, 8 =
07") = 0 near the crack tip. Drugan’s asymptotic solution for
the stress field reduces to that given by Chitaley and McClintock
(1971) for a homogeneous elastic-perfectly plastic material un-
der the above condition. In Fig. 7, this asymptotic solution is
compared with the near-tip angular variation of 7,, 74 and
the equivalent stress 7, = 72 + 72, obtained from the present
numerical work for n = 25 (power hardening) and & = 0.001
(linear hardening) and corresponding to 4 = 10, The numerical
results are taken along the same near-tip rectangular contour
shown in the inset of Fig. 4. Further, the stresses are normalized
in a manner so that 7, = 1 at # = 0 to facilitate a comparison
with the perfectly plastic asymptotic results. It can be seen from
Fig. 7 that the near-tip angular stress variation obtained from
the present work for very low strain hardening in material #1
along with a stiff substrate, follow quite well the analytical
results given by Drugan (1991). It should be noted from Fig.
7 that there is a sharp upward turn in 7, as 8 — 180 deg.
The numerical results for the cases indicated in Fig. 7 showed
secondary plastic reloading very near the crack flank which
conforms to the analytical solution of Drugan (1991).

4.2.2 Crack Profiles. The crack profiles in the two halves
of the bi-material are shown in Fig. 8 for a hardening exponent
of n = 10. The crack displacement u; normalized by K*/G,7
is plotted against normalized distance along the crack flanks.
The cases of 8 = 1 and 8 = 10 are considered. The zero datum
in this figure corresponds to the original interface line.

It is found that the crack profile is almost symmetric with
respect to the crack line for the case of 8 = 1, For a stiffer
substrate, the crack profile is lesser both in the top and bottom
halves. The crack displacement in material #2 decreases dramat-
ically as # increases, whereas in material #1 the reduction is
quite small. In the limiting case of a perfectly rigid substrate,
the crack flank should displace only in the top half, and this
profile for the Mode III condition considered in this paper
should coincide with that in a homogeneous elastic-plastic mate-
rial. It was found that the crack displacement is more if material
#1 possesses larger strain hardening (smaller n).
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Fig. 7 Comparison of the near-tip angular stress distribution for o =

0.001 (very low linear hardening}, n = 25 (very low power-law hardening)
and # = 10, with the analytical perfectly-plastic solution
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Fig. 8 Crack opening profile forn =10 and g = 1, 10

4.2.3 Potential for Stable Crack Growth. 1t is important
to compare the potential of bi-material systems with different
amounts of mismatch in elastic modulii, to sustain stable crack
growth at the interface. For this purpose, the ratio of the far-
field J-integral for steady-state crack growth to its value at
initiation, (J,,/J.) has been estimated using a critical crack-tip
opening displacement criterion which applies for ductile frac-
ture. Failure adjacent to or along an interface can be caused
by a ductile failure mechanism (like microvoid growth and
coalescence) or by a brittle failure mechanism (like microcrack-
ing) or by interface debonding. The dominance of a particular
failure mechanism at the interface depends on the material prop-
erties, geometry of the system and the nature of applied loading.
In fracture experiments using alumina bonded with pure alumin-
ium, Dalgleish et al. (1989) observed ductile rupture in the
aluminium side adjacent to the interface. On the other hand, a
bimaterial combination involving alumina and an aluminium-
magnesium alloy, failed by brittle fracture in the alumina side
adjacent to the interface. These experiments did not show any
evidence of interface debonding.

According to the critical crack-tip opening displacement cri-
terion, crack growth will occur if the opening displacement &
at a small micro-structural distance r. behind the tip attains a
critical value 8. The crack profiles for steady-state crack growth
shown in Fig. 8 in the upper half of the bi-material were com-
bined with corresponding crack profiles for the stationary crack
to estimate the ratio J,;/J. (see, for example, Dean and Hutchin-
son, 1980). For this purpose, the solution for a stationary crack-
at a bimaterial interface under Mode III small-scale yielding
conditions was obtained using a separate finite element proce-
dure,

In Fig. 9, the variation of the J,,/J. ratio with the microstruc-
tural parameter 6./yq ., estimated using the critical crack-tip
opening displacement criterion is shown for hardening exponent
n = 10. A comparison is made of the J,,/J. ratio for two bimater-
ials with 8 = 1 and 8 = 10. The figure clearly shows that for
a certain value of the microstructural parameter, the ratio J,,/
J.. for a bi-material with 8 = 10 is higher than that for 8 = 1.
This indicates that a bimaterial with a stiffer substrate has a far
greater potential to sustain stable crack growth due to ductile
rupture adjacent to the interface than a bimaterial with the same
elastic modulii on either side. Further, it can be seen from Fig,.
9 that as 6./ yq . increases the potential of the bimaterial system
to sustain stable crack growth at the interface increases. It was
found that the application of a critical stress criterion (which
pertains to brittle failure) showed results which were qualita-
tively similar to Fig. 9.

5 Conclusions

A finite element analysis of steady quasi-static crack growth
under Mode III conditions at a ductile-brittle interface has been
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Fig. 9 Variation of J,,/J. with microstructural parameter &./yu . based
on a ductile fracture criterion forn =10and g = 1,10

conducted. The ductile material is assumed to exhibit either
linear isotropic hardening or power-law hardening. The follow-
ing are the most important conclusions of this work.,

1 The dominant term representing the asymptotic fields is
found to exhibit a radial dependence of the form r°, when the
ductile material displays linear hardening. Further, the present
numerical results suggest that variable-separable solution as-
sumed for the asymptotic fields in the work of Castafieda and
Mataga (1991) is reasonable for Mode III. The results obtained
for the singularity order s match quite closely with those re-
ported in their work.

2 The range of dominance of the analytical near-tip fields
of Castafieda and Mataga (1991) is found to be a function of
the hardening parameter «. It decreases with diminishing strain
hardening,.

3 From the analysis of results for the power-law hardening
ductile material, it is observed that for a given value of the
hardening exponent n, the stresses around the crack tip are
lower for a bimaterial with a stiffer substrate.

Journal of Applied Mechanics

4 The crack displacement in the ductile material is less
when the substrate is stiffer. For a given ratio of § = G,/G,,
the crack displacement (for steady-state crack growth) in the
ductile material reduces with decreasing strain hardening.

5 A bimaterial system with a stiffer substrate exhibits a
greater potential to sustain slow stable crack growth along the
interface. This is true both when failure occurs by ductile rup-
ture or brittle cracking adjacent to the interface.

References

Castafieda, P. P., 1987, "Asymptotic Fields in Steady Crack Growth with
Linear Strain Hardening,”" Jowrnal of Mechanics and Physics of Solids, Vol. 35,
pp. 227-268.

Castafieda, P. P., and Mataga, P. A., 1991, “*Stable Crack Growth along a
Brittle/Ductile Interface—I. Near-tip Fields,”" International Journal of Solids
and Structures, Vol. 27, No. 1, pp. 105-133.

Chitaley, A. D., and MecClintock, F. A., 1971, “Elastic-Plastic Mechanics of
Steady Crack Growth under Anti-plane Shear,”’ Journal of Mechanics and Physics
of Solids, Vol. 19, pp. 147-163.

Dalgleish, B. J., Trumble, K. P., and Evans, A. G., 1989, ""The Strength and
Fracture of Alumina Bonded with Aluminium Alloys,"" Acta Metallurgica, Vol.
37, pp. 1923-1931.

Dean, R. H., and Hutchinson, J. W., 1980, **Quasi-static Steady State Crack
Growth in Small-Scale Yielding,”" in Fracture Mechanics: Twelfth Confi
ASTM-STP-700, pp. 383-4035.

Drugan, W. J., 1991, “*Near-tip fields for Quasi-static Crack Growth along a
Ductile-Brittle Interface,”” ASME JoURNAL OF ApPpLIED MECHANICS, Vol. 58, pp.
1L=119,

Drugan, W. I, Rice, I. R., and Sham, T. L., 1982, “*Asymptotic Analysis of
Growing Plane Strain Tensile Cracks in Elastic-Ideally Plastic Solids,”" Journal
of Mechanics and Physics of Solids, Vol. 30, pp. 447-473,

Narasimhan, R., Rosakis, A. J., and Hall, J. F., 1987, *'A Finite Element Study
of Stable Crack Growth under Plane Stress Conditions: Part 11—Influence of
Hardening,"" ASME JournAL OF ApPLIED MECHANICS, Vol. 54, pp. 846853,

Rice, 1. R., 1988, *‘Elastic Fracture Mechanics Concepts for Interfacial
Cracks,”" ASME JournaL oF APpLIED MECHANICS, Vol. 55, pp. 98-103.

Shih, C. F., 1991, “*Cracks on Bimaterial Interfaces: Elasticity and Plasticity
Aspects,'" Materials Science and Engineering, Vol. A143, pp. 77-90.

Shih, C. F., and Asaro, G. C., 1988, “‘Elastic-Plastic Analysis of Cracks on
Bimaterial Interfaces, Part I: Small-Scale Yielding,"” ASME JOURNAL OF APPLIED
MEecHANICS, Vol. 55, pp. 299-316.

Shih, C. F., and Asaro, G. C., 1989, “'Elastic-Plastic Analysis of Cracks on
Bimaterial Interfaces, Part II: Structure of Small Scale Yielding Fields,"" ASME
JoOurNAL OF AppLIED MECHANICS, Vol. 56, pp. 763-779.

Zywicz, E., and Parks, D. M., 1989, **Elastic Yield Zone Around an Interfacial
Crack Tip,”" ASME JournaL oF ApPLIED MEcHANICS, Vol. 56, pp. 577-584.

MARCH 1986, Vol. 63 / 209

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Effective Thermoelastic Moduli
of a Unidirectional Fiber

G. P. Tandon

AdTech Systems Research, Inc.
1342 North Fairfield Road,
Dayton, OH 45432

N. J. Pagano
WL/MLBM,

Wright Patterson AFB,
Dayton, OH 45433

Composite Containing Interfacial
Arc Microcracks

In this work, we have employed a variational model to examine the effect of fiber-
matrix debonding on the thermoelastic response of a unidirectional composite. The
model is designed to represent the concentric cylinder model of a composite represen-

tative volume element and it contains the capability to enhance the accuracy of a
given numerical solution. The effect of the extent of debonding as well as fiber volume
fraction on all the effective moduli of the unidirectional composite has been examined.
Numerical results reported in the literature are compared with the results of the
model developed in the present study to examine the quality of the model.

Introduction

The effect of debonding on the thermomechanical behavior
of the composite can be studied by introducing models that
simulate failure at the constituent interfaces. One such model
hypothesizes that various interfacial conditions corresponding
to an imperfect interface can be theoretically simulated by as-
signing different property values to an imaginary layer (or in-
terphase region) (Agarwal and Bansal, 1979; Tandon and Pa-
gano, 1988; Jasiuk and Tong, 1989). The debonding phenbme-
non has also been simulated by perfectly smooth interfaces
(Benveniste and Aboudi, 1984; Mura et al, 1985; Pagano and
Tandon, 1990) by imposing the continuity of normal displace-
ments and tractions at the interfaces while allowing the shear
traction to vanish there. Several authors (Lene and Leguillon,
1982; Benveniste, 1985; Aboudi, 1987; Steif and Hoysan, 1987,
Jasiuk and Tong, 1989; Hashin, 1990) have developed models
for interfacial sliding based on the approximation that interface
tractions are directly proportional to the corresponding jumps
in displacement. On the other hand, a fiber completely separated
from the matrix can be simulated by applying zero traction
boundary conditions on the interface or as a cylindrical void in
the matrix material (Pagano and Tandon, 1990), Alternately, a
debonded fiber can be imagined to be replaced by one bonded
to the matrix but having a modified constitutive equation to
simulate a material capable of carrying compression only ( Taka-
hashi and Chou, 1988). All the models discussed so far are
mathematical representations of a fiber that has fully debonded
from the matrix of the composite, i.e., all these approaches
have implicitly assumed that the entire fiber-matrix interface
has debonded. However, the actual interface may exhibit a be-
havior that represents partial debonding, i.e., there may exist a
region of the interface where failure has taken place and the
rest of the interface remains intact.

The problem of partial debonding has been addressed in the

literature by use of finite element methods, where a series of -

coincidental node pairs are generated along the interface to
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model the discontinuous displacement behavior of the fiber and
matrix (Shimansky et al., 1990; Sullivan et al., 1990; Nimmer
et al.,, 1991; Robertson and Mall, 1992; Yuan, 1992). Other
treatments include the use of the boundary element method
employing the basic cell of a rectangular array ( Achenbach and
Zhu, 1989) and a hexagonal array ( Achenbach and Zhu, 1990)
and solving of singular integral equations using numerical meth-
ods (Selvadurai et al, 1989; Teng, 1992). A damage model for
uniaxially reinforced composites weakened by an ensemble of
microcracks assumed to be entirely open and confined to the
fiber/matrix interface has been presented by Ju (1991). Re-
cently, employing complex variable methods, Chao and Laws
(1992) have given a proper solution for partial crack closure
due to load orientation,

There are various aspects to the problem of interfacial de-
bonding, such as the prediction of initiation, growth, and extent
of debonding, and the effect of debonding on composite re-
sponse, say, effective composite moduli. In the present work,
we restrict our attention to the latter problem, i.e., we consider
the effect of the extent of debonding as well as constituent
material properties and volume fraction, on composite moduli.
Our approach is to appeal to the Reissner (1950) variational
theorem, which has been successfully employed to study the
elastic stress fields in flat laminates (Pagano, 1978) as well as
involute bodies of revolution (Pagano, 1986) and concentric
cylinder assemblages (Pagano, 1991; Pagano and Brown, 1993;
Pagano and Tandon, 1994). It has already been demonstrated
that such models provide accurate descriptions for stress fields
in the vicinity of a stress riser, even though no singularity is
present owing to the solution scheme employed, so that they
are appropriate for use in conjunction with an average stress
failure theory, while accurate predictions of energy release rates
have also been demonstrated. In order to examine the quality
of the model, we will compare the results for the debonding
problem treated by Yuan (1992), Teng (1992), and Sullivan
et al. (1990). The variational analysis can also be easily em-
ployed to examine the internal stress field and energy release
rate in the presence of interfacial debond. This would be useful
in analyzing a progressive crack under changing overall loads.
This work is currently in progress and will be presented else-
where (Tandon and Pagano, 1994 ).

Variational Model

The medium considered is a concentric cylindrical body as
shown in Fig. 1. The innermost cylinder is the fiber, the next
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Fig. 1 Cross section of composite cylinder for analysis

ring (s) can be considered as coating(s) or interphase region(s)
while the outermost ring can represent the matrix material or a
material with effective composite properties, Cylindrical coordi-
nates r, , z are introduced and each material is assumed to be
thermoelastically cylindrically orthotropic.

The methodology that was developed by Pagano and Tandon
(1994) was based on dividing the cylindrical domain in the —r
and — # directions as shown in Fig. 1. The number of subdivi-
sions was dictated by the nature of damage present, required
solution accuracy and the choice of boundary conditions. A
typical region bounded by the ‘‘edges’’ defined by # = 6, and
#- is referred to as a sector. Each sector, in turn, is composed
of a cylindrical core surrounded by a number of concentric
cylindrical wedges. In subsequent discussion, any arbitrary re-
gion bounded by inner and outer radii, denoted by r, and ry,
respectively, will be referred to as a layer. It will be convenient
to define an index k (k = 0, 1,— N) to represent the various
layers, where k = O refers to the core and there are N concentric
cylindrical layers in the model.

The stress field is assumed such that o,, g, and o, are linear
in the radial direction, r, within the layer, while the form of the
remaining stress components are then derived from the elasticity
equations of equilibrium (with no z-dependence). Letting oy,
03, O3, 04, Ts, O, Tepresent o,, Gy, O, Oy Oy Oy, TESPEC-
tively, we arrive at the relations in the layer rp = r = ry

Ufzp;‘;f}j) (i=l.2,“.6;J=].2,...4) (1)
where p;; are functions of # only defined such that
Pill) = agi(ry,8) (i=12,...60a=1,2) (2)

and f § are known shape functions of r defined by

, Iz —7r

[IO=fP=fP=f=fP=f=2

27 N

r—r

(D = £ = p3) = ) = pI5) — p(0) )
2

=R = =P =P = f = —

fw=fw=(ﬂ—9 i—i)m-wo*+1(n¢m
1) r ry ra r

. r ra r ¥ o 1
= %'”Z(;_‘g——% r—?“r—i)(rz—n) ]+?(-”|¢0) (3)
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with
pu=fP=0(n=0

= 00r # 0;

i=1,2,...6 and J=34)
i=1,2,6 and J=3,4 or
i=4,5 J=4).

Pu =

and

(4)

In other words, the functions f {” and the corresponding p;; not
displayed in (3) all vanish. Thus, the p functions are equal to
actual stresses at r = r,, r; and the stresses are functions of r
and @ alone. In problems which do not involve elastic singulari-
ties, the assumed variation of the stress field is limited only by
the thickness of the layer. Therefore, to improve the accuracy
of the model, each one of the wedges or the cylindrical core
can be additionally subdivided in the radial direction.

The r, #, z components of displacement are designated as u,,
uy, and u,, respectively. The general form of the displacement
field consistent with stresses that only depend on r and @ is
given by

u, = u(r,8) +z(csinf + dcos #)

Il

ug =v(r,0) + z(ccos @ — dsin 8)

w,=w(r,8) —r(csinf + dcos 8) + ez (5)

where ¢ and d measure rigid-body displacements and € is a
constant. In the subsequent derivation of the governing equa-
tions, the integrations will give rise to weighted average dis-
placements and displacements on the surfaces r = r,, r,. There-
fore, we make the definitions

(4. 4,9,9*% 4= j q(r 2, e, rDdr, g=u, v, w

I

(6)

although every weighted integral is not defined for each dis-
placement function. We also let

4u(0) = q(ra, 0) (a=1,2)

with the same interpretation of gq.

Reissner (1950) has shown that the governing equations of
elasticity can be obtained as a consequence of the variational
equation

(1)

oJ =0 (8)

where

(9)

Ji= f Fdv —f T,U;dS
v i

Fig. 2 Schematic of partial debonding at fiber/matrix interface (given
by 8 = +6* m = 0*)
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and

F = %Tij( Uij + U,u} - W(TU, eq‘)- (10)

In these equations W is the complementary energy; 7; and U;
are the stress and displacement components, respectively, in
Cartesian coordinates; e; are the mathematical free expansional
or nonmechanical strains; V is the volume enclosed by §; S’ is
the part of § on which one or more traction components are
prescribed; T, are the Cartesian components of the prescribed
tractions; and body forces have been neglected.

The variational equation is equivalent to the field equations
and boundary conditions of linear elasticity theory provided
both stresses and displacements are subject to variation in the
application of (8). For a body consisting of a core region plus
N cylindrical layers, the formulation leads to a system of 24 N
+ 19 algebraic and ordinary differential equations in & for a
like number of unknowns, which are p,, pi2, par, P22, P31y Pazs
P33s Pass Pars Pazs Pass Psis P2y Ps3s Pots Peas 8, ¥, d, U, v¥, W,
w*, and e, within each annulus; and p,,, pi2, P21, P22, Pars Paz,
Dats Pazs Psis Ps2s Pots Peas B, U™, T, 0%, W, w* and e, in the core,
while 7 N + 6 boundary conditions are required at each ‘‘edge’’
@ = 6,, 8,. Note that the interfacial displacements u;, v, and w;
(i = 1, 2) only appear in the governing equations if they are
prescribed, hence they are not treated as dependent variables
in the model.

On planes r = constant, the appropriate prescribed functions
consist of one member of each of the following products

Palty,  Paly,  Psiwy (11)
on surfaces r = r, = 0 and
Paalla,  PagVa, Psawa (12)

on surfaces r = r,, while for the core region (12) alone is
applicable, Furthermore, continuity conditions can be written
for the surfaces r = constant which are internal to the medium.
The boundary conditions on 8 = 8,, 8,, or ‘‘edge’’ conditions,
can be expressed by prescribing one term from each of the

following products (although this decomposition is not unique)
Hfil’; ngfs Hﬁﬁkv HJS;UF' ngk! ngiks
(k=0,1,—N) (13)
while if k # 0 we have, in addition, the product
Hw, (k=1,2, —N) (14)
wherz for k # 0,
' n_n
f2Pa — NpPa + (_2 - _2)P43
Fa ry
H, = H
—hn
1 1
Pa2 — pa + r_f _';_'% D3
H, = v Hy=py (15)
1o =iy
and for k = 0,
H =py; H,= (Pa2 — puXry H; =0, (16)
while
Fiy e Py — Np» - Pn — Pa
h=n Fa—=n

H. = 2Pt — NP2, H, = Ps2 — Ps1
e e e = T o aa o
h=n rz =

17

hold for any value of k (recall that & = O represents the core
material ). In the event that the body is subdivided into sections

212 / Vol. 63, MARCH 1996

Table 1 Effective stiffness coefficients from present model for Nicalon/
1723 glass composite (v, = 0.4; 8* = debond angle as shown in Fig. 2)

[Stiffness (GPa) [ g"_ o0 [0 = 30° [ 6'=45° | 0'= 60° | & = 90
Cn 157.868 | I51.114 | 147245 | 143.933 | 137.270
Cnz T41.484 | 133426 | 122380 | 104.706 | 36.665
Cas 141484 | 88.244 62520 | 46.103 | 36.663
C2 48.302 41.838 36.626 30.307 10.043
Cu 48.302 41.838 36.626 30.307 10.043
Ci 48.302 29.675 20515 143532 10.043
Cu 48.302 29675 20515 14.532 10.043
T 45837 29.885 21.570 15.770 8533
Ciz 45837 79.885 21.570 15.770 8.534
Cas 47824 | 37.592 | 29.197 21.038 14.065 |
Css 487226 36.389 27.766 20,786 15.426
Ces 48.226 47.685 45874 41.850 13.426

by planes @ = const, such as in the case where internal cracks
in these planes are present, the appropriate interface conditions
follow directly from (13) and ( 14). For example, one member
of each term can be specified for prescribed tractions and/or
displacements while continuity is implied when each member
of (13) and (14) is continuous. The solution to the boundary
value problem is exact (in the present formulation) if the edge
traction boundary conditions are consistent with the assumed
r-dependence. Otherwise, further subdivision of the layer will
have to be done to approximate the prescribed edge traction
boundary condition.

In the longitudinal direction, we either prescribe € or N, given

by

N, _ J’"? (r3+nrnrn—2rH
(@-z) Jdo |7 6

(2rk- rir, —

+ P 6

2
")]de. (18)

However, the various ¢ or N, may or may not be arbitrarily
selected as this choice is affected by the boundary conditions
across both interfaces of a layer (Pagano and Tandon, 1994).
Also note that freedom to prescribe arbitrary sets of traction
boundary conditions in boundary value problems is restricted
owing to the need to constrain rigid-body displacement.

Since the field equations within each material are linear dif-
ferential equations with constant coefficients, the general form
of the solution for any of the dependent variables P(#) is ex-
pressed by

P(B) =Y A eM + P,(8) (19)

within each layer where A; are constants, \; are eigenvalues of
a determinant, and P,(#) is a particular solution. In case of
multiple roots, the homogeneous solution can be obtained by
the method of reduction of order. For the class of boundary
value problems treated in this work (see (21) and (27)), the
general form of the particular solution is given by

2
Y (L, cos wh + M, sin wf) (20)

w=1

P8) =Y Ko +

where each term of the particular solution is further multiplied
by 6™ if the right-hand side of the nonhomogeneous linear equa-
tion happens to be the solution of the corresponding homoge-
neous equation ( is the multiplicity of the root of the character-
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Fig. 3 The variation of effective Young's moduli, namely, E,,, Es, and E;; of
Nicalon/1723 glass composite with angle of debonding (FEM data from Yuan,

1992)
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Fig. 4 The variation of effective shear moduli, namely, Gz, Gi3, and Ggz; of
Nicalon/1723 glass composite with angle of debonding (FEM data from Yuan,

1992}

istic equation of the homogeneous equation). This completes
the boundary value problem formulation with the present model.

Effective Moduli

To define the effective thermoelastic properties of a compos-
ite, the RVE is subjected to linear surface displacement condi-
tions

Ui(S) = el x(8) (i,j=1,2,3) (21)

where x; are the Cartesian coordinates of the outer surface S of
the concentric cylinder and €} are constants (In the case of a
homogeneous material under boundary conditions (21), the
strain field would be given by Efj). The stress-strain relation for

the composite can then be written as
T4 = CP (ef? — €f?) (i,j=1,2...6) (22)

where C{” is the effective stiffness and ¢!’ is the effective

Journal of Applied Mechanics

expansional (nonmechanical) strain of the composite, while
74 and €/ are the composite stress and strain components,
respectively. The displacement formulation leads to a direct
calculation of the composite stiffness, C{’. On the other hand,
the RVE can be subjected to traction boundary conditions

Ti(8) =74m (i,j=1,2,3) (23)

where n; are the components of the unit outward normal vector
and 7 are constants. The traction formulation leads to the calcu-
lation of effective compliance, S{f, through the relation

e =8P+ el (L,j=1,2...6) (24)

where S§’ is not necessarily the inverse of C{f’. In Egs. (22)
and (24), standard contracted notation is used such that 7, 7,
T3s Tar Tsy T stand for Tirs T225 T3, T23, T3y T12s rcspcctive]y,
and ¢ (i = 1,2 ... 6) are the respective engineering strains.
Further, recalling the issues discussed earlier (Pagano and Tan-
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Fig. 5 The variation of effective Poisson's ratios, namely, 2, vy, and vy of
Nicalon/1723 glass composite with angle of debonding (FEM data from Yuan,

1892)

don, 1990), the composite stress is obtained by volume averag-
ing the stress tensor while the composite strains are given by
constants which are their surface values at certain points on the
outer boundary of the composite cylinder (these are the same
as the body average strains defined by Benveniste, 1985).

Under perfect bonding, with the fibers aligned unidirection-
ally along x,, use of displacement (21) and traction (23 ) bound-
ary conditions on the external surface of the RVE leads to upper
and lower bound estimates of the elastic stiffnesses, respec-
tively. For the composite cylinder model, upper and lower
bounds for four of the five elastic moduli, namely, longitudinal
Young’s modulus, E;,; major Poisson’s ratio, v3; longitudinal
shear modulus, G;3; and plane-strain bulk modulus, K;; coin-
cide, whereas, bounding solutions for the transverse Young’s
modulus, Es;, are obtained. Hashin et al. (1985) have compared
the analytical predictions employing CCM with numerical re-
sults using hexagonal array and have shown that the agreement
between the two solutions is extremely good for all elastic
properties considered. Hashin et al. (1985) further observed
that the upper bound results for composite transverse Young’s
modulus using CCM correlated very well with experimental
measurements of composite moduli for a wide range of elastic
moduli and fiber volume fraction. Further comparisons of the
effective elastic moduli and constituent microstresses em-
ploying CCM with existing numerical solutions are given in
Tandon (1995). The results clearly demonstrate that CCM can
provide a good simulation for the RVE provided the displace-
ments are prescribed on the external surfaces. For this study,
we will therefore make use of displacement boundary conditions
to define the composite properties.

To evaluate the effective elastic moduli, we set the expan-
sional strain components identically equal to zero in (22). By
setting each strain component, €{, equal to one individually,
while all others are zero, we will, respectively, obtain the jth
column of the C{’ matrix. The effective engineering constants
can now be defined by the following generalized relations be-
tween the stiffness coefficients where the symmetry of the coef-
ficients is not assumed

C12(C5,Cy3 — C3C3) 4
(C7C33 — CxCyy)

C31(Ci3C5; — C1aCs3)
(CiiCs — C13Cqy)

Ci3(C3Ca — C3Ca2)
(CnCs — CiaCx)
C(C12C5 — C1Cs2)
(CnCs — Ci3Cyy)

E,=Cy+

Ezz = C;:_'_:, o
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CSI(CDC!S A C]BCZ‘Z) CS‘J,(CIJCZI == CIICI!J

Ey=Cy +
BT TR T (CuCa - CuCa) | (CuCa — CuCa)
(C12Cs3 — C13Cxy)
Vy =——"""—"""==; Gp=C(
! (CuCn—CuC) T
(CIBCZZ = CIZC'D}
V3 = ——————; Gy = C;
P (CuCa - CuCn)’
CnCys — Ci3C
Vs = ( 11823 13 21) - G23 =2 C4-4- (25)

" (CuCxn — CralCay)

Note that in Eqgs. (25) the superscript (c) on the composite
stiffness coefficients has been omitted for brevity, and in subse-
quent discussion will also be frequently omitted unless needed
for clarity. Next, setting the composite strain components €}
all to zero leads to the calculation of the expansional strain
through

el = -8 i (with €/ = 0) (26)

where the elastic compliance S has already been determined
and the composite stress 7§ can be computed as explained
earlier.

Partial Debonding Problem

We will now treat the case where debonding may occur over
a portion of the interface given by # = +6*, = + 6* for all
values of z (# is measured from x;-axis as shown in Fig. 2). A
fiber completely separated from the matrix can be simulated
by applying zero traction boundary conditions on the interface
(Pagano and Tandon, 1990) provided the displacements are
consistent with opening'. On the other hand, continuity of all
traction and displacement components exist in the bonded re-
gion. The interface boundary conditions treated in this problem

thus consist of
g, =0, =0, =0, indebonded region

Oy, Orgy Opy Uy, Ug, U, continuous; in ‘‘bonded’” region.

(27)

! The linear elasticity solution provided here does not consider the nonlinear
contact problem.
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These are the theory of elasticity boundary conditions which
are transformed by (2) and (7) for the present model. Addition-
ally, we prescribe e and set the fiber and matrix displacement
to be the same in the longitudinal direction for the case of
complete debonding. For the type of boundary value problems
treated in this work (see (21) and (27)), we have continuity
along the radial lines at # = +6*, = + §* However, when 8%
= 90 deg corresponding to complete debonding, rigid-body
displacements have to be constrained within the fiber region.

Numerical Results

We consider a unidirectional composite aligned along x, for
the analysis. The material properties used in the calculations,
representative of Nicalon fiber and 1723 Glass matrix, both
assumed to be isotropic, are listed as follows:

Material E(GPa) G(GPa) a(X 107%/°C)
Nicalon 200.0 77.0 32
1723 Glass 88.0 36.0 5.2

Two different solutions based on the present model are con-
structed for this study. In the first solution where N = 3, the
matrix is modeled as two cylindrical layers which have their
common interface at » = (1, + r;)/2, while the fiber is subdi-
vided into a core and layer with their interface being located at
r¢/2. In the second solution, we set N = 5 such that in the fiber
region we have a core and two annular regions whereas the
matrix was subdivided into three layers. The core and subse-
quent layer outer radii for N = 5 were given by r,/3, 2r//3, ry,
(2 ry+ 1r)/3, (rp + 2 r,)/3 and r,, respectively.

For v, = 0.4, and N = 3, the nonzero components of the
effective stiffness matrix are listed in Table 1 as a function of
the angle of debonding. For both #* = 0 deg and 90 deg,
corresponding to perfect bonding and complete debonding of
the interface, respectively, the composite is transversely iso-
tropic, and there exist five independent components of Cj,
which may be taken as Cy,, Cs, Ciz, Csn, and Cgs. However,
for partial debonding of the interface, isotropy in the transverse
2-3 plane is lost. For all other values of #* (different from 0
deg and 90 deg) the number of independent C; is found to be
nine corresponding to an orthotropic material. The additional
stiffness components can be taken to be Ci;, Cja, Ca, and Css.
The concentric cylinder had also been discretized and analyzed
by Yuan (1992) using finite elements. The results from his
analysis are found to be in reasonable agreement with our values
listed in Table 1.

Using (25), the effective engineering constants can now be
calculated. Figures 3-5 illustrate the behavior of the effective
engineering constants with angle of debonding for v, = 0.4 and
N = 3 and 5 along with the values reported by Yuan (1992).
The results of the present study have been shown (Pagano and
Tandon, 1994) to be in excellent agreement with the elasticity
solution (Pagano and Tandon, 1990) for #* = 0 deg and 90
deg. As seen from Fig. 3, debonding at the interface is seen to
have negligible effect on the longitudinal Young's modulus,
E,,. Also, E;; seems to decrease gradually with increasing 6%
whereas F,; remains almost insensitive to debonding at small
values of #*. At a debond angle of say 45 degrees, Ej; reduces
by approximately 44 percent of its value at §* = 0 deg, whereas
the reduction in E,, is only about 7 percent. Even at a debond
angle of 75 deg, the reduction in E,; is only about 30 percent.
With further increase of 8%, E;, drops rapidly to its completely
unbonded value. Increasing the number of rings N from 3 to 5
results in a slight increase in the effective stiffness but the
improvement is small. The FEM solution obtained by Yuan
(1992) seems to predict a slightly stiffer composite in the trans-
verse plane. However, agreement between the results from the
variational model and FEM solution is quite reasonable for the
entire range of debonding.
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Fig. 6 The variation of effective coefficient of thermal expansion,
namely, ay,, a2z, @and ay; of Nicalon/1723 glass composite with angle of
debonding

The behavior of the longitudinal shear modulus, G5, is simi-
lar to that of E,;, whereas, the transverse shear modulus, G
and longitudinal shear modulus, G,; behave in a manner similar
to that of Es,, as shown in Fig. 4. The FEM solution ( Yuan,
1992) again seems to predict a stiffer composite over most of
the range of 6*. The effective Poisson’s ratios satisfy the relation

(28)

thereby establishing symmetry of the effective stiffness matrix.
Their variation with the angle of debonding is illustrated in Fig.
5. What is interesting to note is that the transverse Poisson’s
ratio, 13;, passes through a minimum as #* is varied from 0 to
90 deg.

In Fig. 6, we have illustrated the behavior of the effective
coefficients of thermal expansion (CTE) with angle of debond-
ing for v, = 0.4 and N = 3 and 5. The results of the present
analysis are seen to be in very good agreement with the elasticity
solution of a concentric cylinder for the two extremes of perfect
bonding (6* = 0 deg) and complete debonding (#* = 90 deg).
Similar to E;;, debonding at the interface is seen to have negligi-
ble effect on the longitudinal CTE, «/,. It is also interesting to
note that a,; seems to increase gradually with increasing 6%,
with a maximum occurring close to complete separation,
whereas a,; remains almost insensitive to debonding at small
values of 6%,

The composite cylinder model has also been employed by
Teng (1992) to evaluate the stiffness reduction of a unidirec-
tional fiber composite containing interfacial cracks under longi-
tudinal shear loading. The resulting mixed boundary value prob-
lem lead to systems of dual series equations, which were then
reduced to Fredholm integral equations of the first kind with a
logarithmically singular kernel, and solved numerically. In Fig.
7 we have compared the effective longitudinal shear moduli
obtained from Teng’s (1992) analysis with the results from the
present formulation with N = 3. The fiber volume fraction was
kept at 0.4 while two different ratios of fiber to matrix shear
moduli, namely, G/G,, = 5 and 20, were considered. As seen
in Fig. 7, the results from our approximate model agree very
well with the exact solutions over the entire range of debonding
for both moduli ratios employing relatively small number of
layers.

Finally, Sullivan, Cassin and Rosen (1990) have employed
finite element analysis to model the effects of fiber/matrix de-
bonding on the resulting transverse moduli of unidirectional
composites using the repeating element of a hexagonal array.
The results from the present formulation (employing a concen-
tric cylinder RVE) are compared with their model representative
of six disbonds around the fiber, with the centers of each disbond

vyE;; = vuEy; | # j, no i, j summation,
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Fig. 7 Comparison of normalized effective longitudinal shear moduli from Teng's

(1992) analysis with present formulation

segment positioned 60 deg apart. The fiber and material proper-
ties taken from the work of Sullivan et al. (1990) are listed as
follows:

E; E, Gy
Material (GPa) (GPa) vy V4 (GPa)
Fiber 9.9 397.2 0.45 0.41 19.9
Matrix 9.1 9.1 0.11 0.11 4.1

where subscripts T and A refer to the stated property in trans-
verse and axial direction, respectively.

The composite transverse Young's modulus, Es;, and shear
modulus, G,;, have been plotted in Fig. 8. Two fiber volume
fractions were investigated, namely, 0.4 and 0.6. The results
from our approximate model (with N = 3) are seen to agree
reasonably with finite element solutions for the range of debond-

ing considered. The degradation of the effective transverse prop-
erties is seen to increase as the angle of debond grows and is
more severe for the higher fiber volume fraction composite, i.e.,
at larger debond angles, lower fiber volume fraction results in
a stiffer composite. We have further observed that the variation
of Ezg, Gu, GL:\, Vay, and V31, with U, is similar to that of E;g,
whereas E,, increases linearly with increase in vy.

Concluding Remarks

In this study, a variational model of a concentric cylinder has
been utilized to examine the effect of the extent of debonding
as well as fiber volume fraction, on the composite moduli of a
typical glass-ceramic composite material. For a symmetrically
partially debonded interface, the composite behaves as an ortho-
tropic material. Interface debonding is seen to have negligible
effect on E, and «,,, whereas, E;;, G2, 3, and a5, are almost

Effective Moduli (GPa)

2 A G13 (Sullivan et al)
0 T L] T T T Y ¥ T
0 7.5 15 22.5 30 G /) 45
Debond Angle (in degrees)

Fig. 8 Comparison of effective transverse Young's modulus, Es;, and transverse
shear modulus, Gz, from the analysis of Sullivan et al. (1990) with present formula-

tion
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insensitive to debonding at small values of §*. Further, for small
debond angles, transverse Young’s modulus is seen to increase
with increasing fiber volume fraction, whereas, at larger debond
angles, lower fiber volume fraction results in a stiffer composite.
It has been clearly demonstrated that the agreement between
the results from the approximate model (employing relatively
small number of layers) and existing numerical solutions
( Yuan, 1992; Teng, 1992; Sullivan et al., 1990) is quite reason-
able for the entire range of debonding considered. Comparison
of experimental measurements of composite moduli with the
results such as those presented in this study can be instrumental
in the analysis of failure modes in the constituent materials of
brittle matrix composites.

As mentioned earlier, the number of regions in the r-direction
can be increased in order to improve the solution accuracy in
the variational method. Another way to enhance correctness
is to adjust the relative thickness of the subdivisions without
increasing their number. Thus, it is the linear dimension in
the radial direction which is the single variable controlling the
accuracy of the solution in the variational method. On the other
hand, in most of the numerical approaches, such as 2-D finite
element or finite difference, it’s the finite size of the element,
or node point spacings in both r- and #- directions, which
control the accuracy of the solution. In that respect, the varia-
tional method facilitates easier control over numerical accuracy.

Finally, in this work, the variational method has been used
to define the response of a composite that behaves in accordance
with the concentric cylinder representative volume element. Al-
ternately, the variational method can be coupled with a four (or
more) phase model (Pagano and Brown, 1993) to look at first
damage in a composite or to examine the effect of nonuniform
fiber spacing, rather than using this as an RVE.

References

Aboudi, J., 1987, *'Damage in Comp Modeling of Imperfect Bonding,"
Composites Science and Technology, Vol. 28, pp. 103-128.

Achenbach, I, D., and Zhu, H., 1989, *'Effect of Interfacial Zone on Mechanical
Behavior and Failure of Fiber Reinforced Composites,’” Journal of Mechanics
and Physics of Solids, Vol. 37, pp. 381-393.

Achenbach, J. D., and Zhu, H., 1990, "‘Effect of Interphases on Micro and
Macromechanical Behavior of Hexagonal-Array Fiber Compasites,'"” ASME
JOURNAL OF APPLIED MECHANICS, Vol. 57, pp. 956-963.

Agarwal, B. D., and Bansal, R. K., 1979, *‘Effects of an Interfacial Layer on
the Properties of Fibrous Composites: A Theoretical Analysis,”" Fibre Science
and Technology, Vol. 12, pp. 149-158.

Benveniste, Y., and Aboudi, J., 1984, *A Continuum Model for Fiber Rein-
forced Materials with Debonding,"” International Journal of Solids and Structures,
Vol. 20, pp. 935-951.

Benveniste, Y., 1985, ““The Effective Mechanical Behaviour of Composite
Materials with Imperfect Contact Between the Constituents,'" Mechanics of Mate-
rials, Vol. 4, pp. 197-208.

Chao, R., and Laws, N., 1992, ““Closure of an Arc Crack in an Isotropic
Homogeneous Material due to Uniaxial Loading,”* Quarterly Journal of Mechan-
ics and Applied Mathematics, Vol. 45, pp. 629-640.

Hashin, Z., Rosen, B. W., and Humphreys, E. A., 1985, “‘Fiber Composite
Analysis and Design,”’ Report DOT/FAA/CT-85/6, Vol. 1, pp. 2-24-2-37.

Hashin, Z., 1990, *‘Thermoelastic Properties of Fiber Composites With Imper-
fect Interface,”’ Mechanics of Materials, Vol. 8, pp. 333-348.

Journal of Applied Mechanics

Jasiuk, L, and Tong, Y., 1989, **The Effect of Interface on the Elastic Stiffness
of Composites,”” Mechanics of Composite Materials and Structures, J. N. Reddy
et al., eds, ASME AMD-Vol. 100, pp. 49-54.

Ju, J, W., 1991, ““A Micromechanical Damage Model for Uniaxially Reinforced
Composites Weakened By Interfacial Arc Microcracks,”” ASME JOURNAL OF
APPLIED MECHANICS, Vol. 58, pp. 923-930.

Lene, F., and Leguillon, D., 1982, *‘Homogenized Constitutive Law for a
Partially Cohesive Composite Material,”’ International Journal of Solids and
Structures, Vol. 18, pp. 443-458.

Mura, T., Jasiuk, [., and Tsuchida, B., 1985, **The Stress Field of a Sliding
Inclusion,’’ International Journal of Solids and Structures, Vol. 21, pp. 1165—
1179,

Nimmer, R. P., Bankert, R. J., Russell, E. S., Smith, G. A., and Wright, P. K.,
1991, “*Micromechanical Modeling of Fiber/Matrix Interface Effects in Trans-
versely Loaded SiC/Ti-6-4 Metal Matrix Composites,"" Journal of Composites
Technology and Research, Vol. 13, No. 1, pp. 3-13.

Pagano, N. J., 1978, *'Stress Fields in Composite Laminates,”” International
Journal of Solids and Structures, Vol. 14, pp. 385-400.

Pagano, N. J., 1986, **Axisymmetric Stress Fields in Involute Bodies of Revolu-
tion,"" Journal Spacecraft and Rockets, Vol. 23, No. 2, pp. 165-170.

Pagano, N. J., and Tandon, G. P., 1990, “‘Modeling of Imperfect Bonding in
Fiber Reinforced Brittle Matrix Composites,'" Mechanics of Materials, Vol. 9,
pp. 49-64.

Pagano, N. 1., 1991, **Axisymmetric Micromechanical Stress Fields in Compos-
ites,” Proceedings 1991 IUTAM Symposium on Local Mechanics Concepts for
Composite Materials Systems, Springer-Verlag, New York, p. L.

Pagano, N. J., and Brown, III, H. W., 1993, ““The Full-Cell Cracking Mode in
Unidirectional Brittle Matrix Composites,”” Composites, Yol. 24, pp. 69-83.

Pagano, N. J., and Tandon, G. P., 1994, *‘2-D Damage Modes in Unidirectional
Composites under Transverse Tension and/or Shear,”” Mechanics of C i
Materials and Structures, Vol. 1, No. 2, pp. 119-155.

Reissner, E., 1950, *On a Variational Theorem in Elasticity,”" Jouwrnal of
Mathematical Physics, Vol, 29, p. 90.

Robertson, D. D., and Mall, §., 1992, *‘Fiber-Matrix Interphase Effects Upon
Transverse Behavior in Metal-Matrix Composites,”" Journal of Composites Tech-
nology and Research, Vol. 14, No. 1, pp. 3-11.

Selvadurai, A. P. 8., Singh, B. M., and Au, M. C., 1989, “*Axial Loading of a
Rigid Disc Inclusion with a Debonded Region,"’ International Journal of Solids
and Structures, Vol. 25, pp. T83-795.

Shimansky, R. A., Hahn, H. T., and Salamon, N. J., 1990, *'The Effect of Weak
Interface on Transverse Properties of a Ceramic Matrix Composite,”” Materials
Research Seciety Symposium Proceedings, Vol. 170, pp. 193-204.

Steif, P., and Hoysan, 8. F., 1987, “‘An Energy Method for Calculating the
Stiffness of Aligned Short-Fiber Composites,'’ Mechanics of Materials, Vol. 6,
pp. 197-210.

Sullivan, B. I., Cassin, T. G., and Rosen, B. W., 1990, **Micromechanical
Analysis of Unidirectional Composites with Unique Fiber Geometries and Fiber/
Matrix Interface Conditions,"’ Proceedings of American Society for Composites,
Fifth Technical Conference, Technomic, Lancaster, PA, pp. 144-153.

Takahashi, K., and Chou, T. W., 1988, *'Transverse Elastic Moduli of Unidirec-
tional Fiber Composites with Interfacial Debonding,"” Metallurgical Transactions
A, Vol. 19A, pp. 129-135.

Tandon, G. P., and Pagano, N, I., 1988, ‘A Study of Fiber-Matrix Interfacial
Modeling,”" Proceedings 4th Japan-US Conference on Composite Materials,
Technomic, Lancaster, PA, pp. 191-200.

Tandon, G. P., 1995, “Use of Composite Cylinder Model as Representative
Volume Element for Unidirectional Fiber Composites," to appear in Journal of
Composite Materials, Vol. 29, No. 3, pp. 388-409.

Tandon, G. P., and Pagano, N. 1., 1994, *‘Damage Modeling of Brittle Matrix
Composites Under Thermal and Transverse Loading,"" Damage Mechanics in
Composites, AMD-Vol. 185, D. H. Allen and J. W. Ju, eds., ASME, New York,
pp. 129-141.

Teng, H., 1992, “‘On Stiffness Reduction of a Fiber-Reinforced Composite
Containing Interfacial Cracks Under Longitudinal Shear,”” Mechanics of Materi-
als, Vol. 13, pp. 175-183.

Yuan, F. G., 1992, “'Elastic Moduli of Fiber Reinforced Brittle Matrix Compos-
ites with Interfacial Debonding,” Contract F33615-90-C-5944, Wright Labora-
tory, Materials Directorate, Wright Patterson AFB.

i

MARCH 1996, Vol. 63 / 217

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Sung Yi?

H. H. Hilton?®

Nonlinear Thermo-Viscoelastic
Analysis of Interlaminar

Stresses in Laminated

M. F. Ahmad*

Agronautical and Astronautical

Engineering Department,

National Center for Supercomputing
Applications

and Theoretical and Applied

Mechanics Department,

University of lllinois at Urbana-Champaign,
Urbana, IL 61801-2935

Composites

A finite element formulation for analyzing interlaminar stress fields in nonlinear
anisotropic viscoelastic laminated composites is presented including a hygrothermal
Jormulation. Schapery’s single integral formulation is extended to account for visco-
elastic anisotropy and multiaxial stress states. Numerical results obtained from the
present formulation are compared against experimental data and excellent agreement
is obtained between these results. As illustrative examples, inplane and interlaminar

stresses for (45/—435); T300/5208 laminate are also presented.

When polymeric composites are exposed to elevated tempera-
tures and moisture environments, mechanical behaviors of poly-
mer matrix composites are significantly affected by such ambi-
ent conditions. Environmental factors such as temperature,
moisture content, oxygen, and ultraviolet radiation are signifi-
cant contributors to material degradation of polymer matrix
composites and these effects have received substantial attention
in the literature (Crossman et al., 1978, 1979; Shen and
Springer, 1979; Whiteside et al., 1983; Yeow et al., 1979).
Nonlinear viscoelastic behavior has been observed in laboratory
tests of polymer matrix composites (Harper and Weitsman,
1985; Hiel et al., 1984; Lou and Schapery, 1971; Tuttle and
Brinson, 1986; Walrath, 1991). Under elevated load conditions,
history-dependent effects can also lead to accumulation of resid-
ual stresses. It is important to examine the dimensional changes
of the laminate as well as moisture and temperature induced
stresses as functions of time. Elastic approaches cannot accu-
rately predict residual stress and strain fields since material
properties and strengths of polymeric matrix composites are
strongly time dependent (Dillard and Brinson, 1983; Hiel et
al., 1983; Lifshiz and Rotem, 1970; Yi, 1993). In composite
structural design, time-dependent effects of polymer matrix
composite materials must be considered in order to ensure real-
istic analysis and the environmental durability over the entire
life span of composite structures.

Interlaminar stresses near free edges are mainly responsible
for delamination failures. Numerous studies (Brewer and La-
gace, 1988; Dévila and Johnson, 1993; Gu and Reddy, 1992;
Hiel et al., 1991; Hilton and Yi, 1993; Kim and Soni, 1984:
Lin and Yi, 1991; Lucas and Odegard, 1989; O’Brien, 1982;
Pipes and Pegano, 1970; Sun and Chen, 1987; Wang and Cross-
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man, 1977; Wang and Choi, 1982; Yi, 1993) have been under-
taken to investigate interlaminar stresses and failures of lami-
nated composites. Hiel et al. (1991) studied the interlaminar
tensile strength under static and fatigue loads including the
temperature and moisture effects. Gu and Reddy (1992) studied
the effect of geometric nonlinearities on free-edge stress fields.
Diévila and Johnson (1993 ) investigated the response and failure
for dropped-ply laminates tested in flat-end compression. A
limited number of studies (Hilton and Yi, 1993; Lin and Yi,
1991; Yi, 1993) have been conducted for rate-dependent inter-
laminar stresses and delaminations. No work has been reported
on interlaminar stresses for nonlinear viscoelastic composites.
(After this paper was submitted and reviewed, Kennedy and
Wang (1994) presented a three-dimensional finite element anal-
ysis for anisotropic Schapery-type stress strain relations and
developed equally efficient recursive relations.) Henriksen
(1984 ) has presented a two-dimensional isotropic viscoelastic
finite element analysis. Lin and Yi (1991 ) developed the numer-
ical procedure to analyze the viscoelastic interlaminar stresses.
Later Yi (1993) proposed the modified Quadratic Delamination
Criterion to account for time-dependent strengths in order to
predict the delamination initiations in viscoelastic composite
laminates as functions of time and loading history. Hilton and
Yi (1993) have shown that the times for delamination onset
occurrences in composites can be predicted probabilistically.
Their analysis includes stochastic processes due to combined
random loads and random delamination failure stresses as well
as random anisotropic viscoelastic material properties.

In this study, based on Schapery’s nonlinear constitutive rela-
tions and virtual work principle (Findley et al., 1989; Lamborn
and Schapery, 1993; Lou and Schapery, 1971; Schapery, 1969),
a numerical procedure is developed for the analysis of nonlinear
anisotropic viscoelastic in-plane and interlaminar stresses in
composite laminates during environmental exposure. Numerical
results have been obtained for [45/—45], laminates to demon-
strate the feasibility of the present approach. Other lay-up orien-
tations can be conveniently analyzed using the present formula-
tion.

Analysis

Lekhnitskii (1963) was the first to consider an anisotropic
clastic generalized plane-strain problem. Pipes and Pagano
(1970) used the following displacement field for symmetric
laminates under a generalized plane-strain state:
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u(x,y,z,t) =x€(t)+ Uy, z, t)
U(J’. z,1) = V()’, Z, f]'
W(y, z, t) @)

where ¢, (¢) is the uniform extensional strain. Small displace-
ments are considered in order to focus primarily on nonlinear
material property effects.

For this case the resulting strains and stresses are independent
of the x-coordinate and the equilibrium equations in the absence
of body forces become

wi(y, z,t) =

Oux + Ty + T =0
Tyw+ Cyypt Tz =0

(2)

TXZ.X + Tl\h}' + JZ-Z = 0

where a comma denotes partial differentiation.

Based on the time-temperature superposition principle (Wil-
liams et al., [955), the relaxation curves can be shifted and
master relaxation curves can be obtained at the reference tem-
perature and humidity, where linear anisotropic viscoelastic re-
laxation moduli can be represented as

Qu(Ty, My, §y) = QF + AQ(Ty, My, §y) 3)

with no summation on i or j and with the reduced time {;
defined by
C(1) = J; ay[T(s), M(s)lds (4)
In the above, i,j = 1, 2, ..., 6, Ty and M, are the reference
temperature and moisture content, Qj and AQj are the equilib-
rium moduli at constant strain and transient components, respec-
tively, and {; are reduced times which are related the shift
factors a;. The relaxation modulus tensor has nine independent
constants for a three-dimensional orthotropic material.
By using a generalized Maxwell model, the relaxation moduli

can be represented in terms of exponential series such that
(Hilton and Dong, 1964)

NT,,
Q7 + X Qyre b

w=1

Q(Ty, My, §y) = (5)

where Ay, are relaxation times, NT}; are the numbers of terms
used in the series expansion and with no summation on i or j.

Introduction of the abbreviated notation leads to the following
relaxation moduli Q; and reduced times {;

O.(Ty, My, C,) = O(Ty, My, )

with no summation on i or j and with

L=4

The transformed relaxation moduli @; with respect to the
laminate coordinates can be obtained by appropriate coordinate
transformations and by using the abbreviated notation they be-
come

(6)

r=1, ..., 9

9
0u(1) = X AyQi(1) (7
r=1
where A;, are the transformation coefficients.

A general practical constitutive theory for nonlinear visco-
elastic materials was developed by Schapery (Findley et al.,
1989; Lamborn and Schapery, 1993; Lou and Schapery, 1971;
Schapery, 1969) from irreversible thermodynamic principles.
By using free energy and entropy production, nonlinear stress
relaxation can be expressed in terms of the same time-dependent
properties obtained by the linear analysis. In the present study,
Schapery’s single integral formulation is extended to account
for anisotropy and multi-axial stress states. Using the contracted
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notation, the constitutive relations for nonlinear thermo-visco-
elastic composite materials with respect to the laminate coordi-
nate can expressed as

9

ai(t) = E

r=1

[Awh?QT%O)

oh?
+ Agh! faguu>~c&n “” ] (8)

with

g(1) = (1) — €ff(2). 9
In the above, o, are stresses and ¢; and ¢;* are total and hygro-
thermal strains. Q; and AQ, are the equilibrium moduli at
constant strain and transient components defined by linear vis-
coelasticity. The quantities h}', k!, h?, and &, are strain-depen-
dent material properties. The reduced time {, can be defined as
a function of shift factor

() = J:ZL-(T, M, €)ds

Eilr) = f (T, M, ¢)ds. (10)
1]

The shift functions @ may depend on strain, temperature, and
moisture contents, When the nonlinear material parameters h
are set equal to one, Eq. (9) reduces to the statement of the
linear Boltzman superposition principle.

Material parameters of laminated composites are evaluated
by uniaxial tests. However, under uniaxial test conditions, an
individual ply within the laminate is in a multiaxial stress state
and the influence of other stresses on material parameters must
be considered. Hiel et al. (1984 ), Tuttle and Brinson (1986),
and Walrath (1991 ) have introduced the average matrix octahe-
dral shear stress in order to account for such multiaxial condi-
tions. Similarly, in this present study, the octahedral shear strain
"™ is introduced and then nonlinear material parameters can
be expressed as functions of single invariant
€8) + (€F — ) + (e — €M)?]

* = Sl (eh - (11)

where €', €7, and €7 are principal strains of the matrix.

Finite Element Formulation

Using virtual work and the constitutive integral equations,
finite element equilibrium equations for nonlinear viscoelastic
composite laminates can now be formulated. In the absence of
body forces, the virtual work principle for element ¢ becomes

ér e = f aﬁeTo'dV“‘) - J: ] 8ATOAT® = 0 (12)
vt! rf

where b€ is the associated virtual strain tensor, o the stress
tensor, T the boundary tractions, 6 the virtual displace-
ment vector, V! the body volume, and I"* is the surface on
which boundary tractions are prescribed.

The displacement components U‘”?, V' W' in Eq. (1)
may be approximated as

Uy, z, 1)
V(y, z, 1)
W@l (y, z, 1)

= [T @) {d*(1)} (13)
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where
Y 0 0 - ¢ 0 O
[(T9]=| 0 ¢, 0 - 0 ¢y O (14)
0 0 ¢ = 0 0

(d(n)} =Lap, d°, i, dP, df?, dP, ...,

di, die, d}elJT. (15)
In the above, [ is the number of nodes for each element,
[¥ ®)(y, z)] are the isotropic shape functions and {d “’(¢)} is
the element nodal displacement vector.

By substituting Egs. (14) into (1), the displacements and
their virtual counterparts within an element can be expressed
in terms of axial strains and nodal displacements

(79) = [L ¥ {;{LEE)} (16)

and

(e)y — (&) £|(I) }
§a0) =[L ¥ w{d“’(:)

where

um(f)
U(‘](I]
Wl”(f)

{a-(e)} -

u(t)(r}
V(1)
w'(1)

Sa) =6 17

and
{(L}y=|lx 0 ol

Differentiating Eq. (17) with respect to x; results in the fol-
lowing strain-displacement relationship:

{e(n)) = [Bl{dﬁ',(,ﬁ)}-

Similar to the stress-strain relationships, finite element equi-
librium equations for nonlinear viscoelastic bodies can also be
stated as hereditary integral equations. Substituting Eqs. (18)
and (19) into the virtual work principle Eq. (13) yields the
finite element equilibrium equations for each element

(18)

9

) [hmm(EM) K2m,() + k(@) f kb (X, G = €1)

il

o @ NTs)
ds

] =0 + R (19)

with no summation over r and where m,n = 1, 2, ..., 3] +
1. In the above, k) is the element stiffness matrix, 7'’ is the
vector of element nodal displacements and f { and f ) are
element nodal force vectors due to applied surface tractions or
uniaxial strain and hygrothermal loadmg; respectively. Nonlin-
ear material parameters A=, h!“ , and @' can be de-
scribed as functions of dlsplacemems by using strain-displace-
ment relationship. The element stiffness matrix and the element
nodal force vectors can be defined as follows:
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ko = f frm BinA Q7 Byudydz (20)

ki (X, & = £1) = f i Dm0, (& = £ ) Brudlydz

NT,
z J.J. BIMAUYQ :’u
e ri!

X BKP[_(cr = C:){Arw]Bjndydz

NT,
= e
e Z kmm‘u

I

cxp[_(gr - Cy:)fhrw]

(no summation over repeated r) (21)

and

F9w = ” [@](t(1)}dydz. (22)

The residual nodal force vector due to hygrothermal loads
becomes

A% = [ he! f f BinAy, Q7 (1)dydz

=

e [ ] Buaneit -

Xahf"’a*('r)

d‘rdydz] (23)
or

where €} are the transformed free hygrothermal strains.
Using an exponential series for relaxation moduli, the force
vector can be rewritten as

O Z [” Lf %) = <8%e)
NT! r=1
+h Y { . o €Xp[— (& = EDIN]
w=| L

T (r 3
x L)y 00 expl =G, - §
2edgH
S M}.M] (24)
or
where
f::‘” == f ) BImA:'erTajdydz
e

st = [ [ BuasorBasae
o = f f o, Bty Q. aydydz
»

et ffﬂn BinA Q. Bdydz (25)
with no summation on r. Note that &; and [, are the transformed
coefficients of thermal and hygroscopic expansions with respect
to the xyz coordinate system.

The global matrices can be assembled from the element matri-
ces and then the finite element equilibrium equations for the
global system become
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9 t
2 [hf % k:,,,.l?,.(f} + hri 'J. k:rmr[xs t_,,{f)
(1]

r=1

2 -
- t;:fs)_]-?% ds] = fu(0) + Fh(D). (26)

Since the above equations are hereditary integrals, a direct
integration of Eq. (27) requires enormous storage memory and
computational time. To overcome these difficulties, a numerical
algorithm similar to that used by Bathe (1982), Lin and Yi
(1991), Oden (1971), Roy and Reddy (1988), Taylor et al.
(1970), and Zak (1967) for linear viscoelastic materials is de-
veloped here for the solution of Eq. (27). The present formula-
tion requires storage of only the previous time solution instead
of all the solutions throughout the loading time history.

Let

Gu(t) = hE» @, (1)
BI(t) = h}-07(2)
05(r) = h2-0%(1)

then the governing equations can be integrated step by step
using a finite difference recurrence relationship for approximate
calculations of derivatives of Egs. (28). By assuming that the
4., vary linearly over each time step At;, the variables §,, and
their time derivatives are given by

(27)

1 X
éur(f) = E}; [(:J - f)éﬂr(fj'-l) + (I - r;—l)‘}iur(tj)]

aq‘ur(t) e Aq"m’(rj) = énr(tj) — éﬂl"(fj—])

at Ay Ay (28
with
At =4—t, t=t=1.
Similarly the hygrothermal derivatives are defined as
967 (1) - ABT(1) _ B7(t) — B7(4-0)
ot At At
aéé’g(r) - AEE’;:;) _orw = f:’(q D 9
If no loading is applied at time ¢t < 0 then
ABT(0) = 87(0), ABY(0) = 87 (0). (30)
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By using finite difference approximations in Egs. (29) and
(30), Eq. (27) can be expressed in a recursive form as

9 NT,
2 (W ke + hIAE D K Srl B8 Y T (2,)
] ) w=l . "
:ﬁrl(tp) +fﬁ|(fp) = Z h: Z {kmurw
r=| w=|

X Sru( &fp)q‘nr( fp—l) - Rmru(‘p)} (31)

with
_ g
fu) = =2 [hi-{fum-07(1)

r=1

NT

FLE0)) + RS (L ADT(E)

w=|
+ f i ABE (1)) (A1) (32)
Rmn..l( f‘.,) =e" &g"“")mm [ Rmrw(f -1 }
+ [km«rur i Aq‘m’(fp—l ) - ::rw * AQ:(!; —\)

o

_fmru'Aéf(f;—l)]'srw(Afp--l)} (33)

1™
SilBh) = 5~ f‘ exp[ — AL (1,)/\,)dT
jl

-

Acr(tp) = Cr(tp} - Qr(rﬂ -l)
RJNIMI(O) L 0
S(0) = 1

(no summation over r).

(34)

Note that Eqgs. (32) are recursive and that it is possible to
solve iteratively for the displacements i, at time #, using only the
previous solution at time #,-,. In the present study, a modified
Newton-Raphson technique (Qden, 1971; Taylor et al., 1970)
was used to solve the above nonlinear equations.

Numerical Results

A limited number of parametric studies have been constructed
in order to illustrate the nonlinear time-dependent behavior of
laminated composites. Consider the laminate under a plane-
strain condition in the x-direction. The laminate width is 2 cm
and the laminate width-to-thickness ratio is four. The compos-
ites consist of T300/5208 graphite/epoxy. Using creep and
creep recovery tests, the master compliance curves and shift
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e
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§ present FEA
2 so10! B . oxperimental results [8)
§. -
8 ap10t |
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Tima (min)
Fig. 2 Creep and creep recovery in [90], laminate
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factors corresponding to various loading conditions were ob-
tained from Tuttle and Brinson (1986).

In this study, the relaxation moduli were evaluated by Schap-
ery’s nonlinear stress-strain relationship and by relaxation/re-
laxation recovery analysis as extended to anisotropic relations,
Eq. (9). Time-dependent Oy, and Qg are plotted in Fig. 1. Tt
is assumed that time function for (s, is equal to the one for
(12, and that Q¢ = Qu = Qss. Q) is taken to be elastic since
it is generally controlled by fiber properties. Also the time func-
tions for Q2, Qa, and O, are taken the same as that for 0,;.

Linear viscoelastic interlaminar stresses at { = 0 were com-
pared with closed-form elastic solutions obtained by Yi (1993).
Comparison studies between viscoelastic finite element solu-
tions and the classical lamination solutions were also reported
by Lin and Yi (1991). In this paper, a comparison study be-
tween experimental results and the present numerical solution
was conducted. Creep and creep recovery data for T300/5208
graphite/epoxy composites were experimentally determined by
Tuttle and Brinson (1986). At a temperature of 300°F, o, =
13.93 MPa (2020 psi) was applied to the 90 deg laminates. The
loading was held constant for eight hours and then removed
in an instantaneous elastic step and after unloading, the creep
recovery was measured for two hours.

In the present study, 29-node isoparametric elements were
used and the in-plane stresses, o,, calculated by the present
method were compared with experimental results. As shown
in Figs. 2—-4, excellent agreement between these results was
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Fig. 4 Creep recovery in [90], laminate
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Fig. 5 Time-dependent in-plane stress o, in [45/-45], laminate

obtained. The discrepancies between these two solutions are
within 3 percent. Similar errors were also observed in the com-
pliance-relaxation modulus conversion process. The transient
creep and recovery responses are magnified in Figs. 3—4.

The nonlinear time-dependent inplane and interlaminar
stresses in composite laminates were studied as a function of
time and loading magnitude. T300/5208 laminates with [45/
—45], lay-ups were considered and nine-node isoparametric
elements were used. The finite element model consists of 14 X
4 meshes (56 elements) in the yz cross section with a total of
784 degrees of freedom. The step-size Ar is set to 0.5 min
initially and At increases with time. There are 55 time steps
involved in the calculation of time-dependent interlaminar
stresses over a period of 6.3 days. Three axial strain loading
conditions such as ¢, = 0.001, ¢, = 0.002, and ¢, = 0.003 were
considered. At isothermal conditions (T = 147°F), the axial
strains were held constant for 5.3 days and then removed in an
instantaneous step. The inplane stress o, which was obtained
near the center of laminate was plotted in Fig. 5 and the residual
stresses were observed after unloading.

The interlaminar stress distributions along the interface be-
tween the 45 deg and —45 deg layers are shown in Figs. 6-9.
Normal interlaminar stresses o, at ¢ = 0 and 7600 mins are
depicted in Figs. 6 and 7, respectively. Also transverse shear
stresses T, at # = 0 and 7600 mins are plotted in Figs. 8 and
9, respectively. As shown in Fig. 10, the rate of stress relaxation
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0.8 0.82 0.84 o.88 0.98 1

y/b

Fig. 6 Interlaminar normal stress o in [45/—45], laminate (t = 0 mins)
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is greater at higher loading conditions. Over a period of 5.3
days, the stresses o, and 7,, relaxed about 11.6 percent at ¢, =
10 ? while at ¢, = 3 X 107 those stresses decreased 16.2
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Fig. 10 Relaxation rate for constant extensional load

percent and 18.7 percent, respectively. The results show that
increasing the load significantly increases nonlinear behavior.

Conclusions

Based on Schapery's nonlinear constitutive relations and vir-
tual work principles, it is possible to develop three-dimensional
nonlinear anisotropic viscoelastic stress-strain relations and an
attendant finite element analysis, which was applied to the deter-
mination inplane and interlaminar stresses in composite lami-
nates during environmental exposures. Numerical results have
been obtained for [45/—45]-s laminates, which demonstrate
the feasibility of the present formulation. Other lay-up orienta-
tions can be conveniently analyzed using the present approach.
The results indicate a strong sensitivity to the nonlinearities of
the viscoelastic constitutive relations,
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A Micromechanical Model for
the Fiber Bridging of Macro-
Cracks in Composite Plates

Recent experimental studies on the propagation of transverse cracks in composites
have shown that fiber bridging is frequently present, and can be considered as the
cause of increased toughness. This paper presents a model that is capable of quantify-
ing this effect and explaining the decrease in the crack growth rate in either a
monotonic or a cyclic load profile. Both Modes I and 1I are considered. The model
is based on the elastic loading of a fiber located on the macro-crack face close to
the tip and under dominantly plane strain conditions. Two fundamental cases of fiber
bridging configurations are distinguished, namely when the fiber-matrix interface is
intact and when the fiber-matrix interface has partially failed. Following the single
fiber analysis, the model is extended to the case of multiple fibers bridging the faces
of the macro-crack. The analysis is for a generally anisotropic material and the fiber
lines are at arbitrary angles. Results are presented for the case of an orthotropic
material with unidirectional fibers perpendicular to the crack faces. Specifically, the
reduction in the stress intensity factor (relative to the nominal value) is investigated
for the glass fibers in a glass/epoxy composite system. The effects of fiber debonding
and pullout with friction as well as fiber breaking are accounted for in the analysis,
and results with respect to a parameter representing the fiber-matrix interface friction
are presented. Results are also presented regarding the partial or full fracture of the
fiber bridging zone. The model can also be used to analyze the phenomenon of fiber
nesting, which is similar to fiber bridging, and occurs with growing delaminations.
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Professor Emeritus.

School of Aerospace Engineering,
Georgla Institute of Technology,
Atlanta, GA 30332-0150

Introduction

In many composite structure applications, transverse cracks,
usually emanating from holes or notches, extend into sizable
macro-cracks growing across the fibers, Fiber bridging of the
macro-crack faces has been observed to take place in polymeric
matrix composites (e.g., Botsis and Shafiq, 1992) and ceramic-
matrix composites (e.g., Zok et al., 1990).

The bridging of macro-cracks by fibers only partially pulled
out is a significant source of toughness. The toughening mecha-
nism behind the delamination tip is analogous to the contribu-
tion to the toughness of polymers by bridges between molecular
chains. Alternatively stated, in plastics, internal stresses are
transmitted through tangles of chains, and if crosslinks are pres-
ent, more and more internal resistance to external loading is
available.

The toughening roles played by fibers bridging a crack can
be conceptually described as follows: Close to the crack tip,
the crack-opening displacement is small enough to be accomo-
dated by enhanced extension of the fiber located there: typical
strains to failure are 0.003 for fiberglass and 0.01 for carbon
fiber. Moving away from the crack tip, the displacement gets
larger so that fiber pull-out or fiber fracture are required in order
to accomodate the increasing crack displacement.

This phenomenon has been exploited in the design of various
titanium and titanium aluminide alloys which have been rein-
forced by unidirectional SiC fibers having carbon-rich coatings.
These fiber coatings contain weak graphitic films, which facili-
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tate interfacial failure and extensive sliding resisted by friction
(e.g. Cox et al.,, 1989). Such weak interfaces are beneficial
in relatively brittle-matrix composites, especially the titanium
aluminides, in contrast to the case of the more common ductile
metal matrix and polymeric composites, in which stronger inter-
faces are generally believed to optimize macroscopic properties.

Despite the relatively stronger interfaces of polymetric matrix
composites, fiber bridging has been observed as a source of
toughening even in these materials. Moreover, another phenom-
enon, which is analogous to fiber bridging, appears in polymeric
matrix composites with growing delaminations. This is the phe-
nomenon of fiber nesting, which takes place because of the
fibers which cross adjacent layers due to compression during
the manufacturing process (Russell and Street, 1988). As the
delamination extends, these nested (bridged) fibers gradually
become strained and subsequently divert some of the available
strain energy away from the crack tip; therefore increasing the
toughness.

The fiber bridging effect on the opening of macro-cracks in
composites is analogous to the effect of discrete asperities in
the obstruction to crack closure in metallic materials (Beevers
et al., 1984; Carlson et al., 1991). However, the fiber bridging
of delaminations in composites affects the loading phase (open-
ing of the delamination) and hence it can influence both the
monotonic and cyclic growth behavior, whereas the discrete
asperities effect in metallic cracks affects the unloading phase
(closing of the cracks) and hence this phenomenon influences
primarily the cyclic growth behavior. In both cases, the result
is a reduced growth rate. In the same context, it can be argued
that just as the plastic crushing of discrete asperities can result
in an acceleration of fatigue crack growth in metals following
a compressive excursion ( Kardomateas and Carlson, 1994), the
fracture of fiber bridges can similarly result in an acceleration
of crack growth in composites following a tensile overload in
a cyclic load sequence. Furthermore, it should be noted that
fatigue crack growth of metals in an inert atmosphere may,
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during unloading, result in a welding of asperities, which would
produce an effect similar to the bridging phenomenon discussed
here (Carlson and Beevers, 1992).

Several important contributions have appeared on the bridg-
ing problem, mainly in connection with ceramic matrix compos-
ites. Specifically, Budiansky and Amazigo (1989) examined
the effect of fiber bridging on the Mode 1 stress intensity factor
in a smeared fiber force model. Rubinstein and Xu (1992) also
examined the effect of fiber bridging on the Mode I stress
intensity factor by using a discrete fiber representation in an
isotropic material and a linear fiber force-displacement relation-
ship. Nemat-Nasser and Hori (1987) developed asymptotic so-
lutions for fully or partially bridged cracks, A detailed treatment
of the fiber debonding with friction was provided by Hutchinson
and Jensen (1990).

In the present paper, a different approach is followed, based
on discrete fibers at arbitrary orientations, with allowance for
fiber breaking. The analysis allows evaluation for both Mode I
and II stress intensity factors and is valid for a generally aniso-
tropic material. Also, by incorporating the capability of treating
individual fibers, it is possible to examine cases in which single
fibers are either fractured or have interface failures which are
very different from their adjacent neighbors; such studies would
be analogous to examining the effect of imperfections in struc-
tural systems. Two cases are treated separately here: either the
fiber-matrix interface remains intact or has failed. For the latter
case, a general nonlinear fiber force-displacement relationship
is proposed.

Formulation

Let us first define the basic geometric and material parameters
that will be used in formulating the model. Consider a fiber at
an angle w and at a distance ¢ from the tip of a macro-crack in
a composite body of thickness 7 (Figs. 1{(a),(b)). The length
of the macro-crack is 2a and the fiber is at a distance b from
the center. The presence of both externally applied forces and

£

Fig. 1(a) External (global) and crack face (local) loading

= B c—-ll

(=dl+s)

AN/

Aol

Fig. 1{b) A single fiber loading the upper crack face
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crack face forces is illustrated in Fig. 1(a), whereas the details
of the proposed medel are indicated in Fig. 1(4). Only the
upper crack face is shown with the fiber developing a force
with components P and Q.

Let us consider a state of plane strain, i.e., €, = ¥,, = y. =
0. In this case, the stress-strain relations for the orthotropic body
are (Lekhnitskii, 1963):

Exx Q) Gy Q3 g O
Eyy _ | @iz Gz (3 Qg Tyy (1)
€z o3 Oy O3z g Oz
Yy g gy Oag Ogg Ty

where a;; are the compliance constants (we have used the nota-
tionl =x,2=y,3 =z).

Using the condition of plane strain, which requires that ¢, =
0, allows elimination of o, i.e.,

|
Ty = — — (ﬂ'lla.\-x + 0230'”.). (2)
Q33
The Eq. (1) can then be written in the form
€ax Bu B2 Bis Ty
Eyy =| B ﬁzz 4325 Tyy f (3)
VY Bis B Bes Ty
where
By=a; -~ 2222 (;j=1,24,5,6). (4)

(255

Problems of this type can be formulated in terms of two
complex analytic functions ®,(z.) (k = 1, 2) of the complex
variables z, = x + s,y, where 5., 5, k = 1, 2 are the roots of
the algebraic equation

f'3||~'-"4 = 28168 + (2B12 + Bes)s* — 2Ba6s + B = 0. (5)

It was proven by Lekhnitskii (1963) that these roots s, s, 5,
5 are either complex or purely imaginary, i.e., Eq. (5) cannot
have real roots.

Now we proceed to the problem of studying the effect of
discrete loads on a crack face in an anisotropic material.

I Concentrated Equilibrating Forces on the Two Faces
of a Macro-Crack in an Anisotropic Material. As has been
discussed, following Lekhnitskii (1963), the plane-strain aniso-
tropic elasticity problem can be reduced to that of determining
the two complex potentials ®,(z,) of two different complex
variables, z; = x + sy, k = 1, 2. Notice that if the complex
potentials ®, are regarded as functions of the complex variables
%, they must be determined not in the region § but in regions
Sy, obtained from § by the affine transformation

=5y (k=12) (6)

X = X+ agy,

where 5, = a; + if5;.

For a crack of length 2a in the z-plane (Fig. 2), Sih and
Liebowitz (1968 ) have shown that K, and K, can be evaluated
directly from ®,(z,) in the limit as z; = a; i.e.,

K+ Ko 25(*3;) lim Ve — a®1(z).

82 2 -*a

(7

In many extensional problems the use of conformal mapping is
an efficient method for obtaining the stress intensity factors.

Let the mapping function be defined (with the usual restric-
tions as to analyticity and single-valuedness) by

z=w(l); (8)

Essentially, we map all three regions S, S, S, onto the { = ¢
+ i plane (Fig. 2). This mapping is effected so that one and
the same point on the contour of the {-plane region will corre-

Ly = Wk(Ck)-
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n L=f+hm
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a ‘0
////t////////// 717
5 (b)

Fig. 2(a) The z-plane with the crack in an anisotropic body; (b) the
transformed, L-plane

spond to the points on the contours of the regions § and S,
which are related by the affine transformation (6).
Then

d®, dG, _ 2i(L)
e e ryrad 9)
by dz wi(G)

Now, corresponding to the crack tip z = z; = a in the z-plane,
there will be a point { = . in the {-plane. Thus, Eq. (7) may
be written

®i(z) =

2i6E)

hm[w( Y= wi(€)]VP——=
) = wi(G)

(10)

The above equation illustrates the fact that the stress intensity
factors may be found simply from a knowledge of ®{(z,) in
the vicinity of the crack tip, and that ®, can be ignored if the
stress intensity factors are the only desired result.
In the z = x + iy plane, we have the region § in the form of an
infinite plane with a crack (Fig. 2(a)), for which the equation is
x=acosf,—w<f<m y=0 (11a)
Since z; = x + sy, the regions S, and S, are also planes with
straight cutouts described by

x=x=acosl —nw<fB<m wm=y=0 (k=12).

(11b)

As has been already observed, we map all three regions S,
S\, S, onto the lower half of the plane { = £ + in. This mapping
is effected so that to all three points on the contours of the
regions S and S, corresponds one and the same point on the
real axis { = €.

1 - g2
1+ &2

z=w(C)=a( ); z = w(). (12a)
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The functions reciprocal to the above, are
1/2 172
a-—z a-—z
- (a3 - (5
a+z a-+

Indeed, when x and y runs along the contour of the crack, taking
on values x = acosf and y = 0, then (12b) results in the values

=0 =tan (6/2) (k=1,2). (13)

That is, a crack of length 2a in the z-plane is transformed to
the entire real axis of the {-plane, and the infinite plane to the
lower half of the {-plane. The crack tip z = a is mapped onto
the point { = 0, and z = —a is mapped onto the two infinite
points on the real axis { = *o. Therefore, the upper crack face
on the z-plane is mapped onto the positive real semi-axis of the
{-plane and the lower crack face is mapped onto the negative
real semi-axis. Since one point z in the z-plane corresponds
to the two points *{ in the {-plane, a one-to-one, conformal
transformation is established between the z-plane and the lower
half of the {-plane.

For a generally anisotropic material, the function ®{(,) for
two equilibrating concentrated loads on the half-plane, applied
at { = *{,, with components P (vertical) and Q (horizontal)
is (Lekhnitskii, 1963)

Ps; + Q 1 [ 1
mi (s =) LG = &)

(12b)

Bl (-&tCJ}

(14)

Then, upon noting that

1 _ ik
V&) e’

lim [w(G) — w(0)]"* ———

and that

if..‘“oco 3 é=(_1+_;)

and using (10) and (14), since zy = b, we obtain for a generally
anisotropic body (at the right end of the crack):

Ku _ P.S‘z + Q (a + b)”z

K; +—_—=
52 m;ia a—-b

so that the stress intensity factors are given directly as

P (a+b)\” Q(a+by”
K, = v Ky = . (15b)
: ;J:z(a—b) U wla \a=b

Hence, the relations (15) give the stress intensity factors for
an anisotropic infinite sheet with a crack along the x-axis of
length 2a, centered at the origin, and having two equilibrating
forces at x = b, one on the upper crack face and the other on
the lower crack face, with y-component, P, and x-component,
Q (per unit thickness).

Notice that since the loads on the crack faces are self-
equilibrating, the stress intensity factors do not depend on
the material constants. This observation has also been made
by Sih et al. (1965); moreover, in analyzing plane center-
crack problems, Sih et al. (1965) were able to conclude that
*‘for problems involving self-equilibrating loads (on each
boundary) the stress intensity factors for both the isotropic
and the anisotropic materials are identical.”” Only if these
loads are not self-equilibrating on each boundary, do the
stress intensity factors depend on the elastic constants. A
similar statement has been made in connection with the stress
distribution in multiply connected bodies by Timoshenko and
Goodier (1970). Specifically, they concluded that *‘the stress

(15a)
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distribution is independent of the elastic constants of the
material if the resultant of the forces applied to each boundary
are zero. The moment of these forces need not be zero."
Notice that this conclusion is of practical importance in the
experimental determination of the stress distribution for any
material by simply applying the optical methods on a trans-
parent material.

Sih et al. (1965) treated the problem of a single, unbalanced,
vertical force, P, on the upper crack face by using a mapping
function that transforms the crack in the z-plane into a circular
hole of unit radius in the {-plane. Since the force was unbal-
anced, their stress intensity factors included the material con-
stants; however, if an equilibrating force on the lower crack
face is included, then their formulas would reduce to the stress
intensity factors (15), independent of the elastic constants.

Although the stress intensities are decoupled and independent
of the elastic constants, the displacement relationships are not,
as will be shown in the next section which considers the devel-
opment of the fiber-bridging model. The basic configuration of
an anisotropic infinite body loaded with remote normal stress
o and in-plane shear 7, would also exhibit this feature of
decoupled and independent of the elastic constants stress inten-
sities, with K; = J(n/c_l and K = 'r,,\f; , but the displacements
would be coupled (Sih and Chen, 1981).

Hence, it is re-emphasized that since during fiber bridging
the loads on the crack faces are self-equilibrating, the stress
intensity factors do not depend on the elastic constants for either
the isotropic or the anisotropic material assumption.

Next, we shall use these relations in the development of the
fiber bridging model.

II Development of the Fiber-Bridging Model. In terms
of the stress intensity factors K; and K, Sih and Liebowitz
(1968) give relations for the displacement field as

u(r, ) = \/2_1' Re{s [(Kisy + Ky)pavcos @ + s, sin 6
1T 5
== (K;.S‘z + K;})PNCOS 8 + 5 sin 6]} 3 (]6a)

u,(r, 8) = ‘/Z_r Rc{ : [(Kis; + Kp)gavcos 6 + s, sin 6
8§ — 5

= (K;Sz + K;;)QNCOS 8+ & sin 9]} - (l6b]

where

pe = Bust + B — B qu = Buse + % = B, k=1,2.
¢

(16¢)

At a distance ¢ behind the crack tip, ie., at # = 7 and r =
¢, the displacements become

U, = V2¢ Im{—l—— [Ki(s1p2 = $2p1) + Kn(pa — p.)]} ,

82 — §;
(17a)
1
u, = \2¢ ‘“‘{s — [Ki(192 = 5:90) + Ku(qs - q.)]} :
2 T 9
(178)
The displacements at the lower crack face, ie., at § = —m,

are of opposite sign,

Notice that even if a pure Mode I state of loading exists, i.e.,
K;; = 0, both normal and shear components of the displacement
field u, and u,, respectively, are nonzero for general anistropy.
This means that the final orientations of the bridging fibers, w;,
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may be slightly different than the initial fiber orientations. They
will be determined in the process of fiber loading, and are,
therefore, unknowns to be determined.

It should also be mentioned that the length of the fiber bridg-
ing zone is assumed to be small compared to the crack length,
and confined near the tip of the crack. Therefore, the displace-
ment relations are expected to be adequate near the crack tip for
the problem under consideration. In practical cases, at moderate
distances from the crack tip, the fibers would actually be ex-
pected to be broken, anyway. A more accurate solution for the
displacement field, valid at large distances away from the crack
tip would certainly be desirable; however, it is not available at
present and our future plans include exploring the theoretical
aspects of obtaining a more accurate displacement field for an
anisotropic crack. This would then be directly incorporated into
our fiber bridging model. Future research could also include
detailed finite element analyses. Please note that the same as-
sumptions regarding the displacement field, namely use of the
asymptoptic near-tip formula, have been adopted in past work
of other researchers, such as the discrete asperities model in
metals of Beevers et al. (1984 ). The discrete asperities model
has been applied to the closure obstruction problem, and it has
been found that the features of the model can be used to correlate
experimental measurements of opening stress intensity factors
after tensile overloads (Carlson et al., 1991).

Now, let us represent the Mode I and Mode II contribution
of the global, external load by K, g, and K, 5, , respectively. By
superposition, the total stress intensity factor is

Ky = Kf..'.f.luml + Kiner. (18)

Displacement conditions at the fiber sites are needed to deter-
mine the fiber loads. The displacements at the upper macro-
crack face, i.e., at # = 7 and an arbitrary r, due to both local
and global loading, is

-ux.\v(rt ﬂ) = u:..v‘(;!. + “x.y,]ocal' (19)

Moreover, if ¢ = a — b represents the initial distance of the
fiber load point from the crack tip, this distance on the upper
crack face is ¢ — & sin w, and the corresponding distance on
the lower crack face is ¢ + 6, sin w, due to the fiber orientation
at an angle w as shown in Fig. 1(b). The quantity &, represents
half of the final fiber interference length and will be discussed
in detail in the following. Hence, including the effect of loading
both the upper and lower faces of the macro-crack, and using
the stress intensity factors for the global and the local load
from (15), we can write the x-component of the displacement
difference between the upper, ¢ = =, and lower, § = —m, face
of the macro-crack at the fiber site, r = ¢, as follows:

[Kigi(sip2 — 521)

u e, ™) = 2\/2_0 Im{

52 — &

+ Kyee(p2 — pi)]

— ¢ + & sin w)”z

+2\/2_c[(2a :
¢ — b sinw
(28 c—§sinw i
¢ + b sin w
1 F cos w
X Im §1p2 — 8
{52_S|[ 271_\/; (s1p2 2Pi)
F sin w

2m[c;
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and the y-component of the displacement spread (opening) as

u,(c, ) = W2 lm{ l

[KiL(5192 — $2q1)
§F2 — §)

+ Kne(ga — QI}]}

. 12
+ 2@[(251 ¢ + & sin w)

¢ — bpsinw

(- §sinw Lo
¢ + b sinw

1 F cos w
X Im

$1g; — §
§2— 5 W( Ea 1)

F sin w

- . (206
+2—mr;—(qz qn)]} (20b6)

Two separate cases of fiber bridging configurations are distin-
guished now.

(a) Fiber-Matrix Interface Intact. 1In this case, which is
schematically shown in Fig. 3, the displacement at the fiber site
is zero. The fiber is elastically stretched with a force F, therefore
the fiber stress is

L 4F

wd o

where d; is the fiber diameter. A condition of the fiber stress
being below the fiber ultimate strength o, ;is imposed for valid-

ity of this model.
The condition of zero displacement at the fiber site gives

ulc, £w) = ue, =m)=0. (216)

Taking into account (15b), (17), and (18), it is concluded that
the foregoing two equations, (214), are two linear equations in
P and Q. Notice that in this case the fiber can sustain both
tensile and shear stresses; the force along the fiber axis is F =
Pcos w + Q sin w.

In this case of an intact fiber-matrix interface, we have very
effective ligament bridging. However, it is more reasonable,
common, and an experimentally supported fact, that the fiber
does not remain perfectly bonded to the matrix and fiber de-
bonding occurs to some extent. This case is examined next,

(b) Partial Fiber-Matrix Interface Debonding. In this
case, which is schematically shown in Fig. 1(#), the displace-
ment at the fiber site is nonzero. The characterization of fric-
tional sliding of a fiber embedded in a matrix is an issue of
intense current interest. To this extent, Hutchinson and Jensen

(21a)

;O < oy

dy

k—— ¢

Fig. 3 The case of fiber-matrix interface intact {ligament-bridging)

Journal of Applied Mechanics

Qi

é
Fig. 4 Schematic of the fiber stress, @, versus displacement, &, curve

(1990) have developed a model that describes the interactions
between components of a unidirectionally reinforced composite
which is subject to debonding. The model is designed to include
the etfects of fiber strength, interface bond strength, and the
friction force which can develop if residual compressive stresses
act across the interface boundary.

The form of the fiber stress, &, versus the pullout displace-
ment, 8, curve with Coulomb friction is qualitatively illustrated
in Fig. 4. The fiber stress versus the debond length, /, is similar
in form. As shown, the debond length and pullout displacement
are zero until a threshold value of stress, &, , is achieved. Above
this value, the curves have decreasing slopes until a limiting,
unstable value of stress, @, is attained. Note that if the fiber
strength, @, is less than @y, the value of & can abruptly decrease
and then continuously decrease with increasing 8.

In the following, a;, b;, and &; are constants that depend on
the overall modulus of the composite and the elastic properties
of the fibers and the matrix, and they are given in the Appendix
of Hutchinson and Jensen (1990). An expression for the debond
length, /, is given in terms of the coefficient of friction, y, and
the area fraction of the fiber, p = [d/(d; + 5)]17, as follows

j d; I [zﬁ,—a‘, + ky(3; —a)], (220)
4ub, g, — T
where
ki = p(1 — p)~'aséslby. (22b)

When the fiber is isotropic with v, = v,,, then a; = 0 and thus
k! =,

Moreover, the pullout displacement, 8, is given by Hutchin-
son and Jensen (1990) in terms of the modulus of the matrix,
E,,, and the mode II toughness for the debond crack, measured
by the critical value of the energy release rate, G.:

- 12
5= (by + ba){l P L (—-ZG” )
P C|€;\ Emd,"

_ 4o,
4ublE,

[e ™+ &~ 1]} , (22¢)

where {; = 4ub,l/d; and o is the normal stress acting across

the interface just below the debond tip. For debonding with

Coulomb friction,

or =—p (1 = p)(B/&E)[B6 — B + k(o — D). (22d)
The previous expressions are nonlinear relations for the fiber

displacement versus fiber stress law, § = F(&). Although it
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seems that a nonlinear fiber load-displacement relationship
would provide a more complete description of the fiber debond-
ing process and better account for the relative sliding between
the fiber and the matrix, the need for analytically tracking the
problem easily has led to the use of a linear relationship between
displacement and fiber load (e.g., Rubinstein and Xu, 1992).
It is also easier to illustrate the use of our fiber bridging model
by using a linear law.

For this purpose, a linear fiber displacement versus fiber stress
law is adopted by using the initial, almost linear segment the
curve in Fig. 4, as follows:

dé dl
= (d—)mm(a‘ -7 1= (5),_,(” —7;). (23a)

Such an approximation should be adequate as long as we are
not very close to the saturation stress, &q.

The resulting expressions are much simpler if we assume that
the fiber is isotropic with v; = v,, (in which case k; = 0). Under
this assumption, we obtain from (22a, ¢) and (23a)

1-p(2G\" 9
=(b,+ b
6= (b 3) pé\é (Emd;) 4ub, (3, — T;)

(g — 7))

forz, <7 <7, (23b)

The initiation stress @; is the stress required to propagate the
debond crack up the fiber and is given in terms of the axial
mismatch strain €7 by

7, __L( ch )1!2-_9.3
&

T x 72
E.e. & \E.,de;

(23c¢)
In turn, the saturation stress &, is given in terms of the radial
mismatch strain €7 by

The initiation stress can be negative if the nondimensional
combination 2G./( Ed;€?}) is sufficiently small; in such cases, a
finite length debond zone would be introduced before any over-
all stress is applied. In the interest of simplicity, let us take 7;
= 0 (the case of nonzero &; will be examined in a future
publication). Furthermore, since we assume that there is a uni-
form distribution of fibers with spacing s and diameter d;
through the thickness, there are 1/(d, + s) fibers per unit thick-
ness, and the effective area per unit thickness is A, =
wd}/4(d; + 5). Then, (23b) gives the fiber displacement &, =
6 in terms of the fiber force F; = A, in the form

- 4F,(d; + 5)
L
J TTEjdj

where now X is dimensionless and can be considered as a mea-
sure of the fiber-matrix friction

P ( 26, )m E
Emdf 4;.:.}.3.6'0 '

(24a)

i=(bz+stl_

— (24b)
péi6;

The minus sign is used because the fiber is under tension loading
when the crack face is loaded with a force opposite to the one
in Fig. 2(a); the force in Fig. 2(a) would generate the local
stress intensity factors given by (15).

In the previous relations, dy is the fiber diameter and s is the
mean spacing between the fibers. In a representation of the form
(24a), the quantity X increases for poorer bond quality that
allows more fiber sliding. This quantity can vary widely de-
pending on the class of composites under consideration. Spe-
cifically, brittle (ceramic)-matrix composites are characterized
by relatively weak interfaces, in contrast to the case of the more
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common polymeric-matrix composites or the ductile metal-ma-
trix composites, in which relatively strong interfaces generally
exist.

Since 26, is the final interference fiber height, the conditions
for determining the forces P and Q are the displacements at the
fiber site

u,(c, ™) — u(c, —m) = 28;sin w,
uy(c, m) — u,(c, —m) = 26;cos w. (25)

III Multiple Fiber Bridging. The single fiber analysis
has been used thus far because a clear definition of the working
quantities was needed. In actual fiber-bridging situations, multi-
ple fibers are connecting the two faces of the macro-crack.
Based on the single fiber analysis, an extension to multiple
fibers can be directly performed. An interesting observation in
connection with the multiple fiber bridging problem is that the
load redistribution, which occurs among fiber bridges, as the
load increases (or the crack propagates) and some fibers break
in the process, is analogous to the redistribution of stresses
which occurs due to the development of a crack-tip plastic zone
in metallic materials. On another note, it can be observed that
a similar redistribution occurs in the shear lag mechanism of
load transfer in composites.

If n fibers at final angles w; and at distances ¢; behind the
tip (and b; from the center) are bridging the faces of the macro-
crack, then the first set of conditions for determining the forces
P; and Q, are the displacement components equations at each
of the fiber sites (Fig. 5). A direct extension of Egs. (20), and
using (25), gives the first equation from the x-component of
the displacement spread between the upper and lower crack
faces as

b 8in w; = Jﬂ; Im[ :

52— 5

[Krce(sip2 = 52p41)

+ Kyer(p: — Pl)]}

n o e 12
+\/§ZZ[(2& cj+5f,smwj)
j=1

i (?.a — ¢; — by sin w_;)”z
¢ + (5}_,' sin wh

1 F,cos w
X Im S ] -
{52 — 5 [T (8ipa= )

2mia
F; sin w; ,
* w’(Pz_Pl):l}- k=

2mva

I,...n (26a)

The condition from the y-component of the displacement spread
is

P17 LT
F2  F1

Fig. 5 Loading of muitiple fibers on the upper face of the macro-crack
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The second set of conditions is the fiber load-displacement
equations, either (22) for a nonlinear law or (23), (24) for a
linear law.

The quantities to be determined are the final fiber interference
heights 6;; and the fiber loads F; as well as the fiber orientations
w;; hence there are 3n unknowns. For each fiber there are two
displacement equations, (264, b), and one *“fiber constitutive,’’
equation; hence we have a total of 3n equations. Therefore, a
well-posed problem has been formulated. The only complica-
tion arises from the fact that the system of equations is non-
linear.

The problem becomes linear, however, in the more common
problem of a transverse crack in a zero-degree unidirectional
orthotropic composite under pure Mode I loading, if the linear
fiber load-displacement Eq. (24a) is used (Fig. 6). Due to
symmetry, w; = 0, and the x-displacements are zero and the
corresponding relations (26a) are automatically satisfied (be-
cause the quantities in the brackets turn out to be real). Further-
more, &;; can be directly expressed in terms of F; from the linear
fiber load-displacement law. This leaves us with the n fiber
loads, F;, to be determined from the n linear equations from
the normal, u,, displacement relations at the fiber sites, (26b).
The number of loaded fibers, n, is determined by imposing the
condition of the fiber loads being below the fiber strength, i.e.:

_4F(d + 5)
nd;

Hence, n is increased successively, until a state is reached where
the nth fiber is under load exceeding the fracture strength.

Tufy i = l‘ e R (27)

1.4

“Nominal” {Applied)
12

=1
L
X osf
~ 8 = 3pm
$ = fum

Y i

04

0z

o . s L L

0 20 40 60 80 100

by
Fig. 6 The “effective” stress intensity factor, K;, as a function of i,

which expresses the interface friction. Two values of fiber spacing, s,
are considered. K, is the nominal (applied) stress intensity factor.

Journal of Applied Mechanics

In the general case of an arbitrary fiber orientation, under
combined Mode 1 and II loading with the linear fiber load-
displacement relation, again &;; can be directly expressed in
terms of F;. Furthermore, an initial guess for the final fiber
orientations is the initial fiber orientations of the parent compos-
ite, w?. This leaves us with the n fiber loads, F;, to be deter-
mined from the n linear equations for the normal, u,, displace-
ments at the fiber sites. An iteration procedure can be employed
to find the final orientations of the bridging fibers, w,, by satis-
fying the x-displacement equations. Since a neighborhood of
the roots is identified, standard numerical techniques such as
the Newton-Raphson, generalized to multiple dimensions, can
be used (Press et al., 1989).

Once the fiber loads, F;, and the fiber interference lengths,
&;:, and orientations, w,, are determined, the local stress inten-
sity factors can be found by using (15b), as follows:

& Fyeos w [ (2a — ¢ + & sinw; "
K joca = Z i
¢ — 6ﬁ Sin w;

j=1 2?r‘f£_!

M (Za — ¢; — & sin w,-)”z]  (28a)

¢ + 8 sin w;

" Fysinw; [ (2a — ¢ + &, sinw;\'?
Kioca = Z .
Z?TJC_I C; — 6_;} sin W

i=1

Ms s g 12
(2a ¢ 6{, sin wj) ] . (28b)
C; = 6fj S w;

Application of the Model

The model described in the previous section has been used
to analyze the effect of fiber bridging on a transverse crack in
a unidirectional orthotropic plate. The linear fiber load-displace-
ment law, Eq. 24(a), is used. It will be shown that the effect
of fiber spacing and the fiber-matrix interface friction can be
quantified in this model. Moreover, the response due to increas-
ing magnitudes of tensile loads that may include partial or full
fracture of the bridging zone will be investigated.

The composite system considered is a glass/epoxy with glass
fibers of diameter d; = 11 pm. Two values of spacing are
considered: one with a fiber spacing of s = 6 um and a more
closely spaced system, s = 3 um. Notice that the fibers are at
distances from the crack tip ¢; = (d; + s)j,j = 1, ... n. For
square spacing, this would give fiber volume fractions of V; =
0.329 and V, = 0.485, respectively, according to the formula

(e.g., Hull, 1981):
-2
v,=Z1 (i + 1) .
4 \ d;

The glass fibers have a modulus E; = 72.5 GPa and an ultimate
strength of o, = 3.5 GPa. The epoxy matrix is assumed to
have a shear modulus of G,, = 1.35 GPa.

The moduli in GN/m? and Poisson’s ratios used are listed
below, where 1 is the horizontal (x) direction, 2 is the vertical
(y), and 3 the direction through the thickness (z).

(a) Spacing of s = 6 um: E, = E3 = 5.1, E; =262, G
= ng = 2.1, G:\; = 1.9, Vi = 0.068, Vo = 0.277, Uy = 0.400.
The characteristic Eq. (5) gives purely imaginary roots:

5 = 0.297i; s, = 1.609i.

Furthermore, Eq. (16¢) gives real p, and purely imaginary gy.

(b) Spacing of s =3 pm: E, = E; = 6.5, E; = 37, G, =
Gy = 2.6, Gy, = 2.4, Poisson’s ratios are the same as in system
(a). For this material, the characteristic Eq. (5) gives again
purely imaginary roots:
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s = 0277 5, = 1.641i.

Furthermore, Eq. (16¢) gives again real p, and purely imag-
inary g,.

In either a center-cracked specimen with a crack of length
2a or a single-edge crack specimen with a crack of length a
under a remotely applied normal stress &y, the stress intensity
factor is the same as for an isotropic body (e.g., Sih and Chen,
1981):

Kr,m,(('fa) = Uo‘/f_l; Ku,r;.r, =0, (29)

A crack length of @ = 10 mm and a remotely applied stress
corresponding to the typical value of fracture toughness of the
epoxy matrix are assumed, ic., K;g, = 1.25 MN/m*?. The
remotely applied stress, oo = 12.5 MPa, and the crack length
are also the same as the ones used in the experiments of Botsis
and Shafiq (1992) and Botsis and Beldica (1994). Furthermore,
a fiber bridging zone of 120 um behind the crack tip is assumed.
For the spacing of s = 6 um, a total of 20 fibers would span
this distance, whereas for the spacing of s = 3 um, there would
be a total of 40 fibers in the bridging zone.

For the unidirectional case, w = 0, the local stress intensity
factors are given by using (28), as follows:

" F c: 12
Ko = X~ (2=2) 5 Kinoww = 0. (30
Llocal JE:I g ( G) {1local ( )

Although the stress intensity factor K; ;; is applied and consti-
tutes the nominal quantity indicative of the amount of crack tip
loading, an ‘“‘effective’” stress intensity factor K; = K, g, +
K joca1, due to the effect of fiber bridging, actually exists at the
crack tip. This depends stmngly of the properties of fiber-matrix
interface, as is clearly seen in Fig. 6, which shows K,/K; ¢, as
a function of the parameter ?\ which expresses the interface
friction. For a larger value of X, i.e., more fiber debonding, the
effective stress intensity factor is smaller.

The two curves represent the two cases of fiber spacing con-
sidered, and it is again clear that the more widely spaced fibers
show a larger effective stress intensity factor than the more
closely spaced system. This agrees very nicely with the experi-
mental observation of Botsis and Shafiq (1992) that the more
closely spaced system is tougher than the more widely spaced
one. Specifically, for X = 20, the effective K, for s = 6 um is
21 percent of the nominal value, whereas for the more closely
spaced s = 3 pm system, the effective X, is only 13 percent of
the nominal value. For a weaker fiber-matrix interface bond, A
= 100, the effective K; for s = 6 um is 59 percent of the
nominal value, and, by comparison, for the more closely spaced
§ = 3 um system, the effective K is smaller, i.e., 44 percent of
the nominal value,

In either case, the fiber stress was below the ultimate fracture
stress o, of the glass fiber, for the entire range of \’s consid-
ered; this indicates that for this example only fiber debonding
and no fiber fracture would occur. Botsis and Shafiq (1992)
and Botsis and Beldica (1994) considered the same geometrical
configuration and the same level of applied stress but in a more
widely spaced glass fiber system and a larger fiber diameter.
Substituting for their fiber spacing and fiber diameter, the pres-
ent model would also predict fiber stresses in the bridging zone
below the ultimate fracture strength of the glass fibers, and this
would again agree with their experimental results, in which no
fiber fracture was observed. Hence, fiber bridging can reduce
significantly the stress intensity factor and hence ‘‘toughen’’
the material, but this depends strongly on the fiber-matrix inter-
face and the fiber spacing. The model presented in this paper
allows quantifying this important qualitative observation.

It is conceivable that an increasing remotely applied stress
ao would lead to fracture of either some of the most remote
from the crack tip fibers, or of the entire fiber bridging zone.

232 / Vol. 63, MARCH 1996

Table 1 Fracture of fiber bridges

i* crq,rfag nf
10.0 8.68 0
30.0 10.79 3
40.0 12.11 6
50.0 13.16 9
60.0 14.21 13
90.0 17.63 16
100.0 18.68 17

* From Eq. (24b).

T oy is the applied stress corresponding to the fracture toughness of the
epoxy matrix; oy is the applied stress that causes fracture of at least
one of the fiber bridges.

£ Number of fiber bridges left (out of initially 20).

This was found to depend strongly on the fiber-matrix interface
parameter, A, as shown in Table 1. In this table, the value of
the applied stress, ag, that first causes fracture of the fiber
bridges is calculated for the entire range of A’s considered,
along with the number of fiber bridges left, ny. The case of fiber
spacing s = 6 um is considered. The fiber bridging zone behind
the crack tip consists of initially 20 fibers. It can be seen that
for strong fiber-matrix interfaces, i.e., low values of A, the entire
fiber bridging zone breaks and no fiber bridges are left, i.e., n,
= 0. Notice that this implies some kind of unstable process
since in this case of low \, the maximum stress carried by a
bridging zone with a smaller number of fibers is higher than
the corresponding one with the load distributed on a larger
number of fibers. However, for relatively weak fiber-matrix
interfaces, that is high values of X, only some of the most remote
fibers break and as a result, a fiber bridging zone is still left.
The applied stress that causes fracture of fiber bridges naturally
increases with weaker fiber-matrix interfaces, i.e., higher values
of A.
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Principles of Localized Buckling

G. W. Hunt

A. Blackmore

Department of Civil Engineering,
Imperial College of Science,
Technology and Medicine
Imperial College Road,

London SW7 2BU U.K.

for a Strut on an Elastoplastic
Foundation

Localization theory for long continuous structures is extended to the buckling of a
thin elastic strut supported by a bilinear elastoplastic medium. It is demonstrated
that the form of localization has much in common with the buckling of struts on
linear and nonlinear elastic foundations in that the localized response, which is of
the greatest practical significance, is accompanied by a myriad of associated less

significant solutions including periodic ones. Special shooting techniques are devel-
oped to deal with the problem of finding the localized solutions from amongst all
competing possibilities.

1 Introduction

The strut on elastic foundation has proved a fundamental
model of structural mechanics (Hetényi, 1946), in both nonlin-
ear and linearized forms. Many such problems are well de-
scribed after a linearization, but the strut on elastic foundation
is not among them. Important localized buckle patterns are lost
for example, along with the associated spatial chaos. Even non-
linear formulations sometimes miss localized solutions in favor
of their periodic or homogeneous counterparts. In Thompson
and Hunt (1973) for example, both linked and continuous struts
on elastic foundations are analysed in depth for their periodic
responses; the authors were then unaware that, if such a system
is long enough (more than about twice the wavelength of the
buckle for the continuous strut), a localized buckle pattern
would predominate.

Softening nonlinearity is an essential ingredient of localiza-
tion, and can come about either through natural geometric ef-
fects over large deflections (Hunt et al., 1993), or over small
deflections with softening introduced into the foundation (Hunt
and Wadee, 1991). We deal here with the associated problem
of a linearized strut on a foundation with bilinear stiffness. We
can take this as being identical to an elastoplastic foundation
(Tvergaard and Needleman, 1980), provided that, in a natural
loading sequence from zero compression, elastic unloading fol-
lowing finite plastic deformation is denied; however unloading
back down the original elastic loading path is allowed.

The long strut on the bilinear foundation is characterized by
the fact that the localized response bifurcates from a finite-
amplitude periodic shape, rather than the vanishingly small am-
plitude of the nonlinear elastic foundation (Hunt and Wadee,
1991). Thus, while for the latter the end-shortening grows from
zero as localization develops, for a bilinear foundation it is finite
before the periodic form is lost: and the longer the strut, the
greater this initial end-shortening. This effectively *‘spring
loads’® the system, providing the rest of the structure with the
potential to unload elastically into the localized region, and
gives a characteristic snap-back ‘“C’’ shape to the load/end-
shortening response. In a mechanism which reflects the scaling
problems known to arise in localization problems in continuum
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mechanics (BaZant and Cedolin, 1991), the longer the strut the
more severe the snap-back.

Here we explore the response of the strut on bilinear founda-
tion entirely in terms of the dynamical phase-space analogy
(Hunt et al., 1989), that is by running the spatial differential
equation as though it were in time. At a general point along
the length the behavior can always be described by a linear
Hamiltonian differential equation. General solutions are then
derivable in closed form, and the response can be understood,
at least locally, in its entirety. Multiple changes of stiffness, as
might occur in a periodic or near-periodic displacement when
the elastic limit is exceeded at many points simultaneously,
introduces a complex sequence of bifurcations that in the limit
turns out to be chaotic. In a companion paper ( Blackmore and
Hunt, 1996), we apply the approach to the problem of upheaval
buckling, with lift-off from a stiff elastic bed into a medium
which provides no restraint. Such problems could possibly enter
the large-deflection range, and the full nonlinear (elastica)
bending equation is therefore also included as an option.

2 Linear Equations

The full nonlinear differential equation for large deflections
of a strut of bending stiffness EJ, under compressive load P,
resting on a linear foundation of stiffness k, is (Hunt et al,,
1993),

EIly + 4599(1 — y*)™" + y*(1 + 3y*)(1 — y*) )
+ Pyl —y) "+ ky(1 =y =0, (1)

where dots denote differentiation with respect to the spatial
variable x, measured along the length of the strut as shown in
Fig. 1. The linearized version for small deflections is

EIj + Py + ky = 0. (2)
This can be nondimensionalized by writing P = pykEI and
differentiating with respect to a new spatial variable %, defined
by ¥ = xVk/EI (Hunt et al., 1996a), to give

y+py+y=0 (3)

From this point we shall drop the tilde, it being understood that
all representations are in the nondimensionalized form,

To this we add two further parameters which allow discontin-
uous jumps at the corner of the bilinearity. A stiffness ratio p
is first added to the third term; for a bilinear foundation of
initial stiffness k, and final stiffness k,, inside the elastic limit
(y < ¥) we thus run the equation with p = 1, changing to some
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Fig. 1 Strut on a linear elastic foundation

p = ka/k, < 1 when the elastic limit is exceeded. A constant
Q is also included, to allow for a lateral side load and/or for
the sudden shift in the virtual origin of y that comes about with
the discontinuity in stiffness, as seen later. We thus write the
fundamental equation

V+py+py+Q=0. (4)

In the sense of the dynamical phase-space analogy (Hunt et al.,
1989), that is by running the equation in a spatial dimension x
as though it were in time ¢, this is all that is required to describe
a strut on a bilinear foundation. We shall be particularly inter-
ested in passage through the symmetric section ¥ = y = 0, this
being a key condition for localized responses ( Hunt and Wadee,
1991).

2.1 Stationary Equilibrium and Linear Eigenvalues.
For all cases of Eq. (4) there is a flat (fundamental) state of
equilibrium, where the derivatives of y are zero, namely,

y=g=e 2 :
P

Invoking the dynamical phase-space analogy, this is like a state
of stationary equilibrium in time, the eigenvalues of which can
be used to fully describe the linearized response. The state may
be unreachable however; it may for instance lie inside the elastic
limit, y < ¥, when the corresponding equation only applies
outside the limit, or vice versa.

We are interested here in parameter ranges, 0 < p < p© =
2(P < P{ = 2Vk,El), and p = 1. In the search for closed-
form solutions to Eq. (4), we start by noting that the characteris-
tic equation

()

ME+ph+p=0 (6)
dictates four distinct forms, depending on the values of p
and p.

2.1.1 Case A: Four Complex Conjugate Eigenvalues (0 <
p =1, p? < 4p). Here the eigenvalues A = *a = if have
both real and imaginary parts, as shown in the complex plane
in Fig. 2(a), and a general solution can be written

¥ = e™(a cos Bx + b sin Bx)

and a, b, ¢, and d are real constants. We note that for the
differential equation running inside the elastic limit, this case
holds with p = 1 and Q = 0.

The signs of the real parts of the eigenvalues indicate that
the flat state is a four-dimensional saddle point with a two-
dimensional stable, and a two-dimensional unstable, manifold
(Hunt and Wadee, 1991). The symmetric section condition, y
= j = 0, occurs at a length x given by

) - (9

In ( ) = 2 arctan (
28

We see that if ¢ + d* < a® + b?, this condition is met at
negative x. Thus, if a starting position x = 0 has the amplitude
of the oscillation on the unstable manifold, Va® + b2, greater
than that on the stable manifold, vc? + 42, and x is taken as
positive, passage through the symmetric section is impossible;
divergence has taken hold, and oscillations of y must grow
exponentially with x.

c? + d*
a* + b?

1

_ 1 ad + bc
da

ac — bd

X

2.1.2 Case B: Four Imaginary Eigenvalues (0 < p = [,
p? > 4p). If p = 1, as p approaches p“ from below the
eigenvalues converge onto the imaginary axis as shown in Fig.
2(b). For p > p©, the eigenvalues then split but remain with
no real parts, as shown in Fig. 2(¢). The same situation can be
found after a sudden drop in p as the elastic limit is exceeded.
The effective p© also drops, and we can now have p? > 4p,
leading to the general solution

y =acos \jx + b sin \jx + ¢ cos hyx

+ dsin \yx — Qlp, (10)
where
2 172
P P
ME(S- w .
‘ (2 V4 ")
2 12
P )
=[5+ )& ; 11
2 (2 2 P) (11)

and a, b, c, and d are again real constants, This is shown in
the complex plane in Fig. 2(c).

Equation (10) has the form of a quasi-periodic solution, and
describes a trajectory on a two-dimensional torus in phase space.
The symmetric section condition gives

)
c

(

which, from a geometrical point of view, represents the condi-
tion that the peaks of both harmonic components in Eq. (10)

1
= — arctan
2

1 b)
x = — arctan | —
I

(12)
a

+ e “(ccos Bx +dsin Gx) — Q, (7)
where
_Ne p ,_ No.,p ni
o = ?Hz, ﬂ— '?+4—, (8) coincide.

1 1

L ] L +
R | 3
(a) (b) (c

) (d) (e)

Fig. 2 Complex conjugate eigenvalues for linearized Eq. (4): (a) Case A; (b)
Transitional case; (¢) Case B; (d) Case D; (e) Case C
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2.1.3 Case C: Two Real, Two Imaginary Eigenvalues (p <
0, p < 2). For the case where p < 0 and the foundation
has negative stiffness, there are two real and two imaginary
eigenvalues, as shown in Fig. 2(d) (Hunt et al., 1989), with
the general solution

y = aeM* + be ™M + ¢ cos Max + d sin \x — Q/p, (13)

where

P pz /2
)\2=(5+1HT_P) ) (14)

and a, b, c, and d are real constants.

This corresponds to the combination of a two-dimensional
saddle and a two-dimensional center. For the symmetric section
condition we have

1 b | d
—In{—)=—arctan [ — ) ,
2\, (a) Ay (‘3)

which indicates coincidence of a peak of the harmonic compo-
nent of Eq. (13) with the peak of the exponential component.

(15)

2.1.4 Case D: Two Zero, Two Imaginary Eigenvalues (p
=0, p < 2). The case where p = 0 provides another distinct
solution to Eq. (4). The characteristic Eq. (6) reduces to

N+ pAT =0, (16)

which has two imaginary and two coincident zero eigenvalues,
and we get the general solution

y=a+ bx + ¢ cos Vpx + d sin Vpx = (Q12p)x?, (17)

where a, b, ¢, and d are real constants. For the symmetric
section condition we have

x—-‘E}Z— L arctan (if)
o \p c)’

which represents a peak of the harmonic component of Eq. (17)
coinciding with the peak of the parabolic component.

This case is of particular practical significance, being an im-
portant ingredient of the buckling of a strut on an elastic-per-
fectly plastic foundation, and the upheaval problem of our com-
panion paper (Blackmore and Hunt, 1996),

(18)

2.2 Spatial Energies: Lagrangian and Hamiltonian.
The Lagrange equation for a conservative mechanical system
running in time is

T o
gar . o 0, (19)
dr dqg;  dg;
where T is the kinetic energy, V is the potential energy, and g;
is a typical generalized coordinate. If we replace time ¢ with
our spatial coordinate x, we can write

T =y + 3py%,
V=3(py* — 3% + Qy + Vo, (20)

where V, is a constant to be determined later. We interpret g;
first as y, leading to the fundamental Eq. (4), and secondly as
¥, giving the identity § = §. T and V thus provide spatial forms
of kinetic and potential energy, respectively. Unlike a typical
mechanical system, however, T is an indefinite quadratic form,
But the system is Hamiltonian and we have a constant of the
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motion ¥ = T + V = const, which in this analogy is a statement
of conservation of spatial energy.

3 Bilinear Equations

For the strut on the bilinear foundation it is now just a case
of applying the appropriate equations and conditions from above
to track the response as the strut repeatedly crosses the elastic
limit. Let us suppose that, for y < §, Eq. (3) governs, meaning
that the initial elastic foundation stiffness &, is positive. If we
measure y from the flat fundamental equilibrium state (5) where
all derivatives vanish, Q = 0. As the response crosses the elastic
limit at y = §, continuity in y and its derivatives must be
maintained: The left-hand sides of Egs. (3) and (4) must match
at y = y. This gives

Q=y(l-p) (21)
for y > §, and Eq. (5) then fixes the corresponding flat state
at

s=-2=2a-p).
PP

In a similar manner, to ensure continuity between the two forms
for the spatial potential energy V, we must have

Vo =—4f(1 =) (23)

for y > §. We note that V, = 0 inside the elastic limit, giving
Jt =T+ V = 0 in the corresponding flat fundamental state.
Continuity of T is always ensured, the expression of Eq. (20)
undergoing no change as the elastic limit is passed.

The values of y and its derivatives at the elastic limit can
also be used to calculate the constants a, &, ¢, and d for the
appropriate general solution. Applying the associated symmetric
section condition we can then predict when we reach the elastic
limir whether a symmetric section condition (localization) will
occur in the next ‘‘loop.”” The arctangent functions of condi-
tions (9), (12), (15), and (18) admit an infinite number of
solutions (separated by multiples of 7 ) which enables prediction
and classification of localized solutions, as seen later.

3.1 Elastic-Hardening Foundation. Let us consider a
strut on a bilinear foundation with initial stiffness k;, > 0 and
final stiffness 0 < k, < k;, conventionally referred to as a
hardening foundation, as shown in Fig. 3(a), in which f(y) is

(22)

fly)

| slope, ke

|
slope, &

1
|
|
g

0.05 [\
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P - N o
U‘zﬁU v 50
0.05
ot 1 F!\\ } T
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25

Fig. 3 (a) Bilinear foundation characteristics; (b) Examples of localized
modes (El = ky =1, k; = 0.1, ¢ = 0.01, P = 1.8)
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the resisting force per unit length. Inside the elastic limit (y <
$) Eq. (3) governs, and for P < P{ = 2VkEl (p < p© = 2)
general solution (7) of case A applies. Invoking the dynamical
phase-space analogy, we start from close to the flat equilibrium
state y = 0 and trace the response with positive x. Wherever
the starting condition lies with respect to the stable and unstable
manifolds, it can be taken that on reaching the elastic limit
the system is in a state of divergence, with a more dominant
destabilizing than stabilizing component to the general solution.

Outside the elastic limit governing Eq. (4) holds, with 0 <
p < 1, and Q given by Eq. (21). The corresponding position
of the flat fundamental state of Eq. (22) is inside the elastic
limit (7 < ¥) and therefore unreachable. Depending on the value
of load P there are two possibilities:

e If P < P§ = 2Vl,EI, p* < 4p and case A holds. Since
¥ < ¥ the response will continue to be dominated by the unstable
part of the general solution, divergence will be maintained albeit
at a different rate, and passage through the symmetric section
and hence localization are not possible. :

e If P> P§ = 2NlyEl, p* > 4p and case B holds. The
quasi-periodic form allows passage through the symmetric sec-
tion, and consequently localization is possible.

The linear eigenvalue problem hence suggests that only a
periodic solution exists at P = P§, but localized solutions can
exist over the range between P{ and P§. Multiple crossing of
the elastic limit provides a variety of possible modeforms, three
of the simplest, identified by the search routine described later
in Section 4.2, being shown in Fig. 3(b).

Figure 4 shows the variation of maximum amplitude y.x and
end-shortening A with load P for the top example of Fig. 3(b);
at the given load this form exits the elastic limit only once
before the symmetric section is reached, although at the extreme
of the post-buckling curve, close to the critical load P{, it tends
to evolve into forms involving more than one exit. Other curves
exist for the other modes, but over the range of displacements
illustrated here it appears that the illustrated curve represents
the least energy, most likely solution in practice. The form of
Fig. 4(b) becomes length dependent close to P{, the eigenvec-
tor in the critical state being periodic, and end-shortening for a
periodic buckle depending on both amplitude and length while
that for a localized buckle depends only on amplitude. For long
struts this gives a characteristic snap-back “‘C’’ shape to the
post-buckling response, seen in the closeup of Fig. 4(b). A
typical loading sequence for a perfect inextensional strut,
brought about by controlling end-shortening displacement A,
is then as follows.

Inextensibility implies that the immediate application of a
small A induces buckling, the load rising instantly to Pf{. Fur-
ther application then produces a periodic buckle pattern, the
value of A growing accordingly along the corresponding *‘neu-
tral”” equilibrium path at constant load, until the amplitude
reaches 7; the longer the strut, the greater the corresponding
“triggering’” value of A. There is then an immediate snap
downwards at constant A (sometimes called snap-back), to a
lower position on the *‘C’" curve where the buckle pattern is
localized, here with much the same shape as seen at the top of
Fig. 3(b).

One consequence of this loading history is that, for a system
free from imperfections, permanent plastic deformation is
avoided. Unloading occurs suddenly as a ‘‘spring-loaded’’
buckled periodic form with amplitude § evolves into a localized
post-buckled state. The elastic unloading that occurs outside the
region of localization is always back down the original loading
path of Fig. 3(a).

3.2 Elastic-Perfectly Plastic Foundation. The case of k;

= 0 is of particular interest, as it models the case of upheaval
from an elastic bed seen in the related companion paper (Black-
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Fig. 4(a) Load versus maximum buckle amplitude

00002 0.0006 0.001

A
0.m 0.02

Fig. 4({b) Load versus end-shortening, with close-up showing charac-
teristic snap-back “C" shape

Fig. 4 Primary mode post-buckling response (El = ky =1, ko= 0.1, 9 =
0.01)

more and Hunt, 1996). Inside the elastic limit case A holds as
before, while outside the strut is assumed to have lifted from
the bed and case D applies. Passage through the symmetric
section, and hence localization, are now possible over the range
0 < P < P§. We see from Eq. (5) that the flat fundamental
state for k; = 0 is at y = *oo,

3.3 Elastic-Softening Foundation. If k, is positive but k,
is negative we have a so-called softening foundation. The elastic
limit y = § now marks a change in the form of general solution
from case A to case C, and passage through the symmetric
section, and localization, are again possible. Equation (22)
shows that the flat fundamental state for k, < 0 lies outside the
elastic limit and is thus physically realizable.

4 Numerical Experimentation

The linearized solutions developed above allow limited pre-
diction of the displacement ‘‘history,”” in the sense of the dy-
namical phase-space analogy, of a strut on a bilinear foundation.
It is of course possible to track any particular solution by
piecewise application of the specific general solutions given
above, but only for one set of starting conditions at a time. For
the system as a whole we turn to numerical runs of Eq. (4)
using a fourth-order symplectic (volume-preserving) Runge-
Kutta scheme (Sanz-Serna, 1988; Hunt and Wadee, 1991).
When the load varies along the length, as in the application to
uplift buckling with friction of Blackmore and Hunt (1996),
there is no readily available general solution but the dynamical
analogy accommodates the change without difficulty.
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A new feature to the numerical runs is the introduction of a
stepsize adjustment routine as the elastic limit is crossed, to
ensure that the stiffness change is invoked tolerably close to
the correct position. This is similar to the problem of landing
exactly on a Poincaré section when using numerical integration
techniques to compute Poincaré maps (Hénon, 1982). Succes-
sively smaller and smaller step sizes are used to home in, to a
specifiable degree of accuracy, on the elastic limit itself.

4.1 Blanket Runs. In assessing the global behavior of
such fourth-order autonomous systems, much can be learnt from
blanketing a two-dimensional space of starts, as shown in Fig.
5. The phase space is of course four dimensional, but we can
assume two of these dimensions to be fixed a priori by two
(starting) boundary conditions. All allowable states of the sys-
tem then appear in a two-dimensional space of starts spanning
perhaps two of y and its first three derivatives: Figure 5 shows
a portion of this space in the two starting variables y, and y,.
Because localized or homoclinic solutions start at, or at least
close to, the flat fundamental state at y = ¥, we have confined
ourselves to starts over a small region (radius 0.0001) enclosing
this state, which itself is found at the center of each plot.

These plots, drawn specifically for EI = k, = 1, k, = 0.1, P
= 1.8, emphasize that the localized solutions exist within a
spiral structure: as we move in towards the center along each
spiral, the same localized form is merely shifted outwards along
the length. Cutting across the spiral formation reveals the large
number of different waveforms that can appear, some of which
are illustrated in Fig. 6. Localized modes are detected by pas-
sage through the symmetric section y = ¥ = 0; reversibility
suggests that this acts as a mirror (Champneys and Toland,
1993), and starts from close to the flat state thence retrace the
solution in reverse to end up at the flat state again. With &, as
positive, localization involves case B solutions outside the elas-
tic limit, and condition (12) on exit from this limit thereby
defines passage through the symmetric section precisely; simi-
larly, on subsequent reentry, a second set of symmetric-section
solutions is defined by the case A condition (9).

The multiplicity of possible solutions is apparent from Fig. 5,
which represent in turn passage through the symmetric section
following the first exit, first reentry, second exit, etc., of the
elastic limit. For the left-hand set, solutions for which

(8 g} )

Fig. 5 Blanket runs in the (y., y») space of starts, showing increasingly
complex behavior as the strut leaves and re-enters the foundation. (E/
=ky=1,k: =01,7 =001, P = 1.8).
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Fig. 6 Multiple possible equilibrium solutions (El = k; = 1, k; = 0.1, =
0.01, P = 1.8). The primary mode, shown at the top left, is the least
energy, most likely solution for practical circumstances.

\; arctan (b/a) — \, arctan (d/c) > 0, (24)

after the first, second, etc., exit from the elastic limit are plotted
in black, while those not satisfying this criterion are shown in
white. For the right-hand set, those satisfying

c? + d? ad + bc
G In (m) — 2w arctan (m) >0 (25)

are marked in black, and those not satisfying in white. In each
case, passage through the symmetric section itself is thus
marked by the border between black and white, which, in com-
mon with other examples of localization and spatial chaos (Hunt
and Wadee, 1991; Champneys and Toland, 1993; Hunt et al.,
1996b), has in the limit an infinitely broken fractal structure.

4.2 Localized Modes and Search Routines. Some of the
infinite variety of allowable buckling modes for the strut on an
elastoplastic foundation are shown in Fig. 6, where the broken
horizontal line drawn at y = § indicates the elastic limit. We
emphasize that not all of the modes depicted here represent
realistic buckling situations; they merely indicate the number
and variety of solutions available to a set of valid equilibrium
equations, however these happen to be solved. From a practical
point of view, the minimum energy state is found in the mode
at the top left of the figure, which thus represents the most
likely form in practice.

The modes are found by starting initial-value runs for Eq. (4)
from close to the flat state y = 0, and searching systematically in
the same two-dimensional space of starts as the blanket runs of
Fig. 5 for positions where the appropriate symmetric section
condition, either (24) or (25) depending on whether the evolu-
tion in x is exiting or entering the elastic zone, is an equality
rather than an inequality. Of course this is only possible to
within some numerical tolerance, but with double-precision real
variables and focusing as accurately as possible, near perfect
symmetry about the center of the localization is obtained in all
cases shown in Fig. 6. These systematic search procedures are
described in earlier publications (see, for example, Hunt and
Wadee, 1991).

5 Concluding Remarks

Application of the dynamical phase-space analogy, which in
essence means making constructive use of shooting techniques
while maintaining an awareness of the underlying character
of the dynamics, has advantages when it comes to numerical
modeling of localization phenomena. Further nonlinearities like
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complicated bedding relations or elastoplasticity of the strut
material generate no real extra difficulty; modified equations
can simply be run in x, with very much the same kind of
questions being asked. Initial value problems remain unfettered
by boundary constraints at the far end, and this frees the ap-
proach from the sort of assumptions—periodicity, constraint to
certain wavelengths, and even of active length itself—that are
often part of boundary value approaches but can hamper appli-
cability (see, for example, Thompson and Hunt, 1973; Tver-
gaard and Needleman, 1980). These advantages are apparent
in the application to upheaval buckling in subsea pipelines
(Blackmore and Hunt, 1996). Under an active pressure or tem-
perature rise, frictional restraint between the bed and the pipe
causes the load to vary along the length, as well as restricting
the length of pipe that is able to unload into the buckled regime.
Both effects would be awkward to model in a boundary value
formulation, but the first is simply accounted for by allowing
an appropriate variation for p in the differential equation, while
the second is handled with a straightforward modification to the
search routine of Section 4.2. This underlines the importance
of the dynamical analogy, closed-form solutions to the boundary
value problem being significantly more difficult, if not impossi-
ble, to handle for a differential equation with a nonconstant
coefficient.

The multiplicity of possible equilibrium states at any load,
or indeed under any applied end displacement, apparently avail-
able to such spatially chaotic localization problems means that
extra physical interpretation is required beyond just equilibrium
considerations; we need somehow to select the most likely state
from all competing possibilities, many of which may be stable
in the sense of being local energy minima. For such systems,
it seems that the Maxwell criterion of stability, which suggests
that as a result of external disturbances a system will tend to
settle in its global energy minimum, may be more realistic than
any locally defined criterion; this may be particularly true when,
as here, snap-back behavior is likely (Baker and Hunt, 1994).
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An interesting point, not addressed by the author, arises in
regard to invariance requirements. Recall that in continuum
mechanics it is usually stated that under an arbitrary superposed
rigid motion of the continuum, the Cauchy stress tensor T trans-
forms as

T* =QTQ’, (1

where the proper orthogonal tensor Q (depending on time only)
represents the rotation in the superposed motion. Correspond-
ingly, the symmetric Piola-Kirchhoff stress tensor S transforms
as

S*=8. (2)

If one is considering a material in which the stress T is uniquely
determined by the history of the deformation of the body, the
transformation law (1) can be argued on the physical grounds
that a superposed motion leaves unaltered the distance between
every pair of particles of the body, always resulting in the same
Lagrangian strain field E. For materials with internal con-
straints, however, only part of the stress tensor is determined
by the motion of the body. For the determinate part of the stress,
the argument given above leads to a transformation law of type
(1). But, can we say anything about how the indeterminate part
of the stress should transform?

To pursue this question, we first recall that for a material
subject to an internal constraint of the form

H(E) =0, 3)
the stress S is given by
L o
S=8S+rx—=, 4
B 4)

where \ is a Lagrange multiplier and the portion S is prescribed
by a constitutive equation. In terms of Cauchy stress, (4) may
be written as

T=T+ T, (5
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Discussion

where
= 1 _= 1 _ do
T=-FSF", I'=-F—F7,
J J 8E

Now, under superposed rigid motions of the constrained body,
the tensors T and S transform as

T*=QTQ", §*=S8. (7)
Further, since the constraint itself applies to all motions (includ-

ing in particular those differing from a given motion by a super-
posed rigid motion), we have

o) o
9E)  aE’

(6)

' =QrQ-. (8)

But, however tempting it may be, we have no grounds for
asserting that the value of the Lagrange multiplier is necessarily
the same for the given motion and for all motions that differ
from it by a rigid motion. Indeed, the essential arbitrariness in
the definition of the multiplier would surely preclude such an
assumption. We conclude therefore that for a constrained mate-
rial, the stress tensors T and S do not necessarily transform by
(1) and (2), respectively.

The case of a rigid body furnishes a nice illustration. The
Cauchy stress tensor in a rigid body is completely indeterminate.
For such a body, any pair of motions resulting from two arbi-
trarily different external force systems still differ by a rigid
motion. It is evident that the internal stress states in these two
motions are completely independent of one another, and hence
do not satisfy (1).

In closing, we remark that for researchers who prefer to use
the Principle of Material Frame-Indifference rather than invari-
ance requirements under superposed rigid motions, caution must
be exercised in dealing with constrained materials. In the case
of rigid bodies, for example, might not two observers looking
at a single motion be expected to relate their Cauchy stress
tensors by (1)7* In this connection, it is interesting to note that
Truesdell and Noll (1965, p. 44), in their statement of the
Principle of Material Frame-Indifference, say: ‘‘Constitutive
equations must be invariant under changes of frame of refer-
ence.”” Only if one applies the principle to the part of the stress
which is supplied through a constitutive equation can an absur-
dity be avoided.
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* It may be mentioned that in accordance with the Principle of Material Frame-
Indifference, the tensor Q is permitted to belong to the full orthogonal group,
although that point is not at issue here.
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